
Free Chapters

Hands-on Scala Programming Copyright (c) 2020 Li Haoyi (haoyi.sg@gmail.com)

First Edition, published June 1 2020

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the Author.

ISBN 978-981-14-5693-0

Written and Published by Li Haoyi

Book Website: https://www.handsonscala.com/

Chapter Discussion: https://www.handsonscala.com/discuss

Live Chat: https://www.handsonscala.com/chat

Online materials: https://github.com/handsonscala/handsonscala

For inquiries on distribution, translations, or bulk sales, please contact the author directly at
haoyi.sg@gmail.com.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, the Author shall not have any
liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

Reviewers

Thanks to all the reviewers who helped review portions of this book and provide the
feedback that helped refine this book and make it what it is today.

In alphabetical order:

Alex Allain, Alwyn Tan, Bryan Jadot, Chan Ying Hao, Choo Yang, Dean Wampler, Dimitar
Simeonov, Eric Marion, Grace Tang, Guido Van Rossum, Jez Ng, Karan Malik, Liang Yuan Ruo,
Mao Ting, Martin MacKerel, Martin Odersky, Michael Wu, Olafur Pall Geirsson, Ong Ming
Yang, Pathikrit Bhowmick

mailto:haoyi.sg@gmail.com
https://www.handsonscala.com/
https://www.handsonscala.com/discuss
https://www.handsonscala.com/chat
https://github.com/handsonscala/handsonscala
mailto:haoyi.sg@gmail.com

Table of Contents

Foreword 9

I Introduction to Scala 13

1 Hands-on Scala 15

2 Setting Up 25

3 Basic Scala 39

4 Scala Collections 59

5 Notable Scala Features 81

II Local Development 105

6 Implementing Algorithms in Scala (not in sample) 107

7 Files and Subprocesses (not in sample) 109

8 JSON and Binary Data Serialization (not in sample) 111

9 Self-Contained Scala Scripts (not in sample) 113

10 Static Build Pipelines (not in sample) 115

III Web Services 117

11 Scraping Websites (not in sample) 119

12 Working with HTTP APIs (not in sample) 121

13 Fork-Join Parallelism with Futures (not in sample) 123

14 Simple Web and API Servers (not in sample) 125

15 Querying SQL Databases (not in sample) 127

IV Program Design 129

16 Message-based Parallelism with Actors (not in sample) 131

17 Multi-Process Applications (not in sample) 133

18 Building a Real-time File Synchronizer (not in sample) 135

19 Parsing Structured Text (not in sample) 137

20 Implementing a Programming Language (not in sample) 139

Conclusion 141

https://localhost/section-header/%20Table%20of%20Contents

Part I Introduction to Scala

1 Hands-on Scala 15

1.1 Why Scala? 16

1.2 Why This Book? 17

1.3 How This Book Is Organized 18

1.4 Code Snippet and Examples 20

1.5 Online Materials 22

2 Setting Up 25

2.1 Windows Setup (Optional) 26

2.2 Installing Java 27

2.3 Installing Ammonite 28

2.4 Installing Mill 31

2.5 IDE Support 34

3 Basic Scala 39

3.1 Values 40

3.2 Loops, Conditionals, Comprehensions 47

3.3 Methods and Functions 51

3.4 Classes and Traits 55

4 Scala Collections 59

4.1 Operations 60

4.2 Immutable Collections 67

4.3 Mutable Collections 72

4.4 Common Interfaces 77

5 Notable Scala Features 81

5.1 Case Classes and Sealed Traits 82

5.2 Pattern Matching 85

5.3 By-Name Parameters 90

5.4 Implicit Parameters 93

5.5 Typeclass Inference 96

Part II Local Development

6 Implementing Algorithms in Scala (not in sample) 107

6.1 Merge Sort

6.2 Prefix Tries

6.3 Breadth First Search

6.4 Shortest Paths

7 Files and Subprocesses (not in sample) 109

7.1 Paths

7.2 Filesystem Operations

7.3 Folder Syncing

7.4 Simple Subprocess Invocations

7.5 Interactive and Streaming Subprocesses

8 JSON and Binary Data Serialization (not in sample) 111

8.1 Manipulating JSON

8.2 JSON Serialization of Scala Data Types

8.3 Writing your own Generic Serialization Methods

8.4 Binary Serialization

9 Self-Contained Scala Scripts (not in sample) 113

9.1 Reading Files Off Disk

9.2 Rendering HTML with Scalatags

9.3 Rendering Markdown with Commonmark-Java

9.4 Links and Bootstrap

9.5 Optionally Deploying the Static Site

10 Static Build Pipelines (not in sample) 115

10.1 Mill Build Pipelines

10.2 Mill Modules

10.3 Revisiting our Static Site Script

10.4 Conversion to a Mill Build Pipeline

10.5 Extending our Static Site Pipeline

Part III Web Services

11 Scraping Websites (not in sample) 119

11.1 Scraping Wikipedia

11.2 MDN Web Documentation

11.3 Scraping MDN

11.4 Putting it Together

12 Working with HTTP APIs (not in sample) 121

12.1 The Task: Github Issue Migrator

12.2 Creating Issues and Comments

12.3 Fetching Issues and Comments

12.4 Migrating Issues and Comments

13 Fork-Join Parallelism with Futures (not in sample) 123

13.1 Parallel Computation using Futures

13.2 N-Ways Parallelism

13.3 Parallel Web Crawling

13.4 Asynchronous Futures

13.5 Asynchronous Web Crawling

14 Simple Web and API Servers (not in sample) 125

14.1 A Minimal Webserver

14.2 Serving HTML

14.3 Forms and Dynamic Data

14.4 Dynamic Page Updates via API Requests

14.5 Real-time Updates with Websockets

15 Querying SQL Databases (not in sample) 127

15.1 Setting up Quill and PostgreSQL

15.2 Mapping Tables to Case Classes

15.3 Querying and Updating Data

15.4 Transactions

15.5 A Database-Backed Chat Website

Part IV Program Design

16 Message-based Parallelism with Actors (not in sample) 131

16.1 Castor Actors

16.2 Actor-based Background Uploads

16.3 Concurrent Logging Pipelines

16.4 Debugging Actors

17 Multi-Process Applications (not in sample) 133

17.1 Two-Process Build Setup

17.2 Remote Procedure Calls

17.3 The Agent Process

17.4 The Sync Process

17.5 Pipelined Syncing

18 Building a Real-time File Synchronizer (not in sample) 135

18.1 Watching for Changes

18.2 Real-time Syncing with Actors

18.3 Testing the Syncer

18.4 Pipelined Real-time Syncing

18.5 Testing the Pipelined Syncer

19 Parsing Structured Text (not in sample) 137

19.1 Simple Parsers

19.2 Parsing Structured Values

19.3 Implementing a Calculator

19.4 Parser Debugging and Error Reporting

20 Implementing a Programming Language (not in sample) 139

20.1 Interpreting Jsonnet

20.2 Jsonnet Language Features

20.3 Parsing Jsonnet

20.4 Evaluating the Syntax Tree

20.5 Serializing to JSON

Foreword
Scala as a language delegates much to libraries. Instead of many primitive concepts and
types it offers a few powerful abstractions that let libraries define flexible interfaces that are
natural to use.

Haoyi's Scala libraries are a beautiful example of what can be built on top of these
foundations. There's a whole universe he covers in this book: libraries for interacting with
the operating system, testing, serialization, parsing, web-services to a full-featured REPL and
build tool. A common thread of all these libraries is that they are simple and user-friendly.

Hands-On Scala is a great resource for learning how to use Scala. It covers a lot of ground
with over a hundred mini-applications using Haoyi's Scala libraries in a straightforward way.
Its code-first philosophy gets to the point quickly with minimal fuss, with code that is simple
and easy to understand.

Making things simple is not easy. It requires restraint, thought, and expertise. Haoyi has laid
out his approach in an illuminating blog post titled Strategic Scala Style: The Principle of
Least Power, arguing that less power means more predictable code, faster understanding
and easier maintenance for developers. I see Hands-On Scala as the Principle of Least Power
in action: it shows that one can build powerful applications without needing complex
frameworks.

The Principle of Least Power is what makes Haoyi's Scala code so easy to understand and his
libraries so easy to use. Hands-On Scala is the best way to learn about writing Scala in this
simple and straightforward manner, and a great resource for getting things done using the
Scala ecosystem.

- Martin Odersky, creator of the Scala Language

9

https://localhost/section-header/%20Foreword

10

Author's Note
I first used Scala in 2012. Back then, the language was young and it was a rough experience:
weak tooling, confusing libraries, and a community focused more on fun experiments rather
than serious workloads. But something caught my interest. Here was a programming
language that had the convenience of scripting, the performance and scalability of a
compiled language, and a strong focus on safety and correctness. Normally convenience,
performance, and safety were things you had to trade off against each other, but with Scala
for the first time it seemed I could have them all.

Since then, I've worked in a wide range of languages: websites in PHP and Javascript,
software in Java or C# or F#, and massive codebases in Python and Coffeescript. Problems
around convenience, performance, and safety were ever-present, no matter which language
I was working in. It was clear to me that Scala has already solved many of these eternal
problems without compromise, but it was difficult to reap these benefits unless the
ecosystem of tools, libraries and community could catch up.

Today, the Scala ecosystem has caught up. Tooling has matured, simpler libraries have
emerged, and the community is increasingly using Scala in serious production deployments.
I myself have played a part in this, building tools and libraries to help push Scala into the
mainstream. The Scala experience today is better in every way than my experience in 2012.

This book aims to introduce the Scala programming experience of today. You will learn how
to use Scala in real-world applications like building websites, concurrent data pipelines, or
programming language interpreters. Through these projects, you will see how Scala is the
easiest way to tackle complex and difficult problems in an elegant and straightforward
manner.

- Li Haoyi, author of Hands-on Scala Programming

11

https://localhost/section-header/%20Author's%20Note

12

Part I: Introduction to Scala
1 Hands-on Scala 15

2 Setting Up 25

3 Basic Scala 39

4 Scala Collections 59

5 Notable Scala Features 81

The first part of this book is a self-contained introduction to the Scala language. We assume that you have
some background programming before, and aim to help translate your existing knowledge and apply it to
Scala. You will come out of this familiar with the Scala language itself, ready to begin using it in a wide
variety of interesting use cases.

13

https://localhost/section-header/%20Part%20I:%20Introduction%20to%20Scala

14

1
Hands-on Scala

1.1 Why Scala? 16

1.2 Why This Book? 17

1.3 How This Book Is Organized 18

1.4 Code Snippet and Examples 20

1.5 Online Materials 22

Snippet 1.1: a tiny Scala web app, one of many example programs we will encounter in this book

Hands-on Scala teaches you how to use the Scala programming language in a practical, project-based
fashion. Rather than trying to develop expertise in the deep details of the Scala language itself, Hands-on
Scala aims to develop expertise using Scala in a broad range of practical applications. This book takes you
from "hello world" to building interactive websites, parallel web crawlers, and distributed applications in
Scala.

The book covers the concrete skills necessary for anyone using Scala professionally: handling files, data
serializing, querying databases, concurrency, and so on. Hands-on Scala will guide you through completing
several non-trivial projects which reflect the applications you may end up building as part of a software
engineering job. This will let you quickly hit the ground running using Scala professionally.

package app

object MinimalApplication extends cask.MainRoutes {

 @cask.get("/")

 def hello() = {

 "Hello World!"

 }

 initialize()

} </> 1.1.scala

15

https://localhost/section-header/1%20Hands-on%20Scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.1.scala

Hands-on Scala assumes you are a software developer who already has experience working in another
programming language, and want to quickly become productive working with Scala. If you fall into any of
the following categories, this book is for you.

Doing big data processing using software like Apache Spark which is written in Scala

Joining one of the many companies using Scala, and need to quickly get up to speed

Hitting performance limits in Ruby or Python, and looking for a faster compiled language

Working with Java or Go, and looking for a language that allows more rapid development

Already experienced working with Scala, but want to take your skills to the next level

Founding a tech startup, looking for a language that can scale with your company as it grows

Note that this book is not targeted at complete newcomers to programming. We expect you to be familiar
with basic programming concepts: variables, integers, conditionals, loops, functions, classes, and so on. We
will touch on any cases where these concepts behave differently in Scala, but expect that you already have
a basic understanding of how they work.

1.1 Why Scala?
Scala combines object-oriented and functional programming in one concise, high-level language. Scala's
static types help avoid bugs in complex applications, and its JVM (Java Virtual Machine) runtime lets you
build high-performance systems with easy access to a huge ecosystem of tools and libraries.

Scala is a general-purpose programming language, and has been applied to a wide variety of problems and
domains:

The Twitter social network has most of its backend systems written in Scala

The Apache Spark big data engine is implemented using in Scala

The Chisel hardware design language is built on top of Scala

While Scala has never been as mainstream as languages like Python, Java, or C++, it remains heavily used in
a wide range of companies and open source projects.

1.1.1 A Compiled Language that feels Dynamic
Scala is a language that scales well from one-line snippets to million-line production codebases, with the
convenience of a scripting language and the performance and scalability of a compiled language. Scala's
conciseness makes rapid prototyping a joy, while its optimizing compiler and fast JVM runtime provide great
performance to support your heaviest production workloads. Rather than being forced to learn a different
language for each use case, Scala lets you re-use your existing skills so you can focus your attention on the
actual task at hand.

Chapter 1 Hands-on Scala 16

https://localhost/section-header/1.1%20Why%20Scala?
https://localhost/section-header/1.1.1%20A%20Compiled%20Language%20that%20feels%20Dynamic

1.1.2 Easy Safety and Correctness
Scala's functional programming style and type-checking compiler helps rule out entire classes of bugs and
defects, saving you time and effort you can instead spend developing features for your users. Rather than
fighting TypeErrors and NullPointerExceptions in production, Scala surfaces mistakes and issues early
on during compilation so you can resolve them before they impact your bottom line. Deploy your code with
the confidence that you won't get woken up by outages caused by silly bugs or trivial mistakes.

1.1.3 A Broad and Deep Ecosystem
As a language running on the Java Virtual Machine, Scala has access to the large Java ecosystem of standard
libraries and tools that you will inevitably need to build production applications. Whether you are looking
for a Protobuf parser, a machine learning toolkit, a database access library, a profiler to find bottlenecks, or
monitoring tools for your production deployment, Scala has everything you need to bring your code to
production.

1.2 Why This Book?
The goal of Hands-on Scala is to make a software engineer productive using the Scala programming
language as quickly as possible.

1.2.1 Beyond the Scala Language
Most existing Scala books focus on teaching you the language. However, knowing the minutiae of language
details is neither necessary nor sufficient when the time comes to set up a website, integrate with a third-
party API, or structure non-trivial applications. Hands-on Scala aims to bridge that gap.

This book goes beyond the Scala language itself, to also cover the various tools and libraries you need to use
Scala for typical real-world work. Hands-on Scala will ensure you have the supporting skills necessary to use
the Scala language to the fullest.

1.2.2 Focused on Real Projects
The chapters in Hands-on Scala are project-based: every chapter builds up to a small project in Scala to
accomplish something immediately useful in real-world workplaces. These are followed up with exercises
(1.5.3) to consolidate your knowledge and test your intuition for the topic at hand.

In the course of Hands-on Scala, you will work through projects such as:

An incremental static website generator

A project migration tool using the Github API

A parallel web crawler

An interactive database-backed chat website

A real-time networked file synchronizer

A programming language interpreter

Chapter 1 Hands-on Scala 17

https://localhost/section-header/1.1.2%20Easy%20Safety%20and%20Correctness
https://localhost/section-header/1.1.3%20A%20Broad%20and%20Deep%20Ecosystem
https://localhost/section-header/1.2%20Why%20This%20Book?
https://localhost/section-header/1.2.1%20Beyond%20the%20Scala%20Language
https://localhost/section-header/1.2.2%20Focused%20on%20Real%20Projects

These projects serve dual purposes: to motivate the tools and techniques you will learn about in each
chapter, and also to build up your engineering toolbox. The API clients, web scrapers, file synchronizers,
static site generators, web apps, and other projects you will build are all based on real-world projects
implemented in Scala. By the end of this book, you will have concrete experience in the specifics tasks
common when doing professional work using Scala.

1.2.3 Code First
Hands-on Scala starts and ends with working code. The concepts you learn in this book are backed up by
over 140 executable code examples that demonstrate the concepts in action, and every chapter ends with a
set of exercises with complete executable solutions. More than just a source of knowledge, Hands-on Scala
can also serve as a cookbook you can use to kickstart any project you work on in future.

Hands-on Scala acknowledges that as a reader, your time is valuable. Every chapter, section and paragraph
has been carefully crafted to teach the important concepts needed and get you to a working application.
You can then take your working code and evolve it into your next project, tool, or product.

1.3 How This Book Is Organized
This book is organized into four parts:

Part I Introduction to Scala is a self-contained introduction to the Scala language. We assume that you have
some background programming before, and aim to help translate your existing knowledge and apply it to
Scala. You will come out of this familiar with the Scala language itself, ready to begin using it in a wide
variety of interesting use cases.

Part II Local Development explores the core tools and techniques necessary for writing Scala applications
that run on a single computer. We will cover algorithms, files and subprocess management, data
serialization, scripts and build pipelines. This chapter builds towards a capstone project where we write an
efficient incremental static site generator using the Scala language.

Part III Web Services covers using Scala in a world of servers and clients, systems and services. We will
explore using Scala both as a client and as a server, exchanging HTML and JSON over HTTP or Websockets.
This part builds towards two capstone projects: a parallel web crawler and an interactive database-backed
chat website, each representing common use cases you are likely to encounter using Scala in a networked,
distributed environment.

Part IV Program Design explores different ways of structuring your Scala application to tackle real-world
problems. This chapter builds towards another two capstone projects: building a real-time file synchronizer
and building a programming-language interpreter. These projects will give you a glimpse of the very
different ways the Scala language can be used to implement challenging applications in an elegant and
intuitive manner.

Each part is broken down into five chapters, each of which has its own small projects and exercises. Each
chapter contains both small code snippets as well as entire programs, which can be accessed via links (1.5)
for copy-pasting into your editor or command-line.

Chapter 1 Hands-on Scala 18

https://localhost/section-header/1.2.3%20Code%20First
https://localhost/section-header/1.3%20How%20This%20Book%20Is%20Organized

The libraries and tools used in this book have their own comprehensive online documentation. Hands-on
Scala does not aim to be a comprehensive reference to every possible topic, but instead will link you to the
online documentation if you wish to learn more. Each chapter will also make note of alternate sets of
libraries or tools that you may encounter using Scala in the wild.

1.3.1 Chapter Dependency Graph
While Hands-on Scala is intended to be read cover-to-cover, you can also pick and choose which specific
topics you want to read about. The following diagram shows the dependencies between chapters, so you
can chart your own path through the book focusing on the things you are most interested in learning.

Part I: Introduction to Scala

Part II: Local Development

Part III: Web Services Part IV: Program Design

Chapter 1: Hands-on Scala

Chapter 2: Setting Up

Chapter 3: Basic Scala

Chapter 4: Scala Collections

Chapter 5: Notable Scala Features

Chapter 6
Implementing Algorithms in Scala

Chapter 7
Files and Subprocesses

Chapter 11
Scraping Websites

Chapter 19
Parsing

Structured Text

Chapter 8
JSON and Binary Data Serialization

Chapter 9
Self-Contained Scala Scripts

Chapter 12
Working with
HTTP APIs

Chapter 14
Simple Web and

API Servers

Chapter 16
Message-based

Parallelism
with Actors

Chapter 10
Static Build Pipelines

Chapter 13
Fork-Join

Parallelism
with Futures

Chapter 15
Querying SQL

Databases

Chapter 17
Multi-Process
Applications

Chapter 18
Building a Real-time

File Synchronizer

Chapter 20
Implementing a
Programming

Language

Chapter 1 Hands-on Scala 19

https://localhost/section-header/1.3.1%20Chapter%20Dependency%20Graph

1.4 Code Snippet and Examples
In this book, we will be going through a lot of code. As a reader, we expect you to follow along with the
code throughout the chapter: that means working with your terminal and your editor open, entering and
executing the code examples given. Make sure you execute the code and see it working, to give yourself a
feel for how the code behaves. This section will walk through what you can expect from the code snippets
and examples.

1.4.1 Command-Line Snippets
Our command-line code snippets will assume you are using bash or a compatible shell like sh or zsh. On
Windows, the shell can be accessed through Windows Subsystem for Linux. All these shells behave similarly,
and we will be using code snippets prefixed by a $ to indicate commands being entered into the Unix shell:

In each case, the command entered is on the line prefixed by $, followed by the expected output of the
command, and separated from the next command by an empty line.

1.4.2 Scala REPL Snippets
Within Scala, the simplest way to write code is in the Scala REPL (Read-Eval-Print-Loop). This is an
interactive command-line that lets you enter lines of Scala code to run and immediately see their output. In
this book, we will be using the Ammonite Scala REPL, and code snippets to be entered into the REPL are
prefixed by @:

In each case, the command entered is on the line prefixed by @, with the following lines being the expected
output of the command. The value of the entered expression may be implicitly printed to the terminal, as is
the case for the 1 + 1 snippet above, or it may be explicitly printed via println.

The Ammonite Scala REPL also supports multi-line input, by enclosing the lines in a curly brace {} block:

$ ls

build.sc

foo

mill

$ find . -type f

.

./build.sc

./foo/src/Example.scala

./mill </> 1.2.bash

@ 1 + 1

res0: Int = 2

@ println("Hello World")

Hello World </> 1.3.scala

Chapter 1 Hands-on Scala 20

https://localhost/section-header/1.4%20Code%20Snippet%20and%20Examples
https://localhost/section-header/1.4.1%20Command-Line%20Snippets
https://localhost/section-header/1.4.2%20Scala%20REPL%20Snippets
http://ammonite.io/
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.2.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.3.scala

This is useful when we want to ensure the code is run as a single unit, rather than in multiple steps with a
delay between them while the user is typing. Installation of Ammonite will be covered in Chapter 2: Setting
Up.

1.4.3 Source Files
Many examples in this book require source files on disk: these may be run as scripts, or compiled and run as
part of a larger project. All such snippets contain the name of the file in the top-right corner:

@ {

 println("Hello" + (" " * 5) + "World")

 println("Hello" + (" " * 10) + "World")

 println("Hello" + (" " * 15) + "World")

 }

Hello World

Hello World

Hello World </> 1.4.scala

import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.2"

}

build.sc

</> 1.5.scala

package foo

object Example {

 def main(args: Array[String]): Unit = {

 println("Hello World")

 }

}

foo/src/Example.scala

</> 1.6.scala

Chapter 1 Hands-on Scala 21

https://localhost/section-header/1.4.3%20Source%20Files
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.4.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.5.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.6.scala

1.4.4 Diffs
We will illustrate changes to the a file via diffs. A diff is a snippet of code with + and - indicating the lines
that were added and removed:

The above diff represents the removal of one line - "Hello World!" - and the addition of 9 lines of code in its
place. This helps focus your attention on the changes we are making to a program. After we have finished
walking through a set of changes, we will show the full code for the files we were modifying, for easy
reference.

1.5 Online Materials
The following Github repository acts as an online hub for all Hands-on Scala notes, errata, discussion,
materials, and code examples:

https://github.com/handsonscala/handsonscala

1.5.1 Code Snippets
Every code snippet in this book is available in the snippets/ folder of the Hands-on Scala online repository:

https://github.com/handsonscala/handsonscala/blob/v1/snippets

For example the code snippet with the following tag:

</> 1.1.scala

Is available at the following URL:

https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.1.scala

This lets you copy-paste code where convenient, rather than tediously typing out the code snippets by
hand. Note that these snippets may include diffs and fragments that are not executable on their own. For
executable examples, this book also provides complete Executable Code Examples (1.5.2).

 def hello() = {

- "Hello World!"

+ doctype("html")(

+ html(

+ head(),

+ body(

+ h1("Hello!"),

+ p("World")

+)

+)

+)

 } </> 1.7.scala

Chapter 1 Hands-on Scala 22

https://localhost/section-header/1.4.4%20Diffs
https://localhost/section-header/1.5%20Online%20Materials
https://github.com/handsonscala/handsonscala
https://localhost/section-header/1.5.1%20Code%20Snippets
https://github.com/handsonscala/handsonscala/blob/v1/snippets
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.1.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/1.7.scala

1.5.2 Executable Code Examples
The code presented in this book is executable, and by following the instructions and code snippets in each
chapter you should be able to run and reproduce all examples shown. Hands-on Scala also provides a set of
complete executable examples online at:

https://github.com/handsonscala/handsonscala/blob/v1/examples

Each of the examples in the handsonscala/handsonscala repository contains a readme.md file containing
the command necessary to run that example. Throughout the book, we will refer to the online examples via
callouts such as:

As we progress through each chapter, we will often start from an initial piece of code and modify it via Diffs
(1.4.4) or Code Snippets (1.5.1) to produce the final program. The intermediate programs would be too
verbose to show in full at every step in the process, but these executable code examples give you a chance
to see the complete working code at each stage of modification.

Each example is fully self-contained: following the setup in Chapter 2: Setting Up, you can run the
command in each folder's readme.md and see the code execute in a self-contained fashion. You can use the
working code as a basis for experimentation, or build upon it to create your own programs and applications.
All code snippets and examples in this book are MIT licensed.

1.5.3 Exercises
Starting from chapter 5, every chapter come with some exercises at the end:

The goal of these exercises is to synthesize what you learned in the chapter into useful skills. Some exercises
ask you to make use of what you learned to write new code, others ask you to modify the code presented in
the chapter, while others ask you to combine techniques from multiple chapters to achieve some outcome.
These will help you consolidate what you learned and build a solid foundation that you can apply to future
tasks and challenges.

The solutions to these exercises are also available online as executable code examples.

See example 6.1 - MergeSort

Exercise: Tries can come in both mutable and immutable variants. Define an ImmutableTrie class
that has the same methods as the Trie class we discussed in this chapter, but instead of a def add
method it should take a sequence of strings during construction and construct the data structure
without any use of vars or mutable collections.

See example 6.7 - ImmutableTrie

Chapter 1 Hands-on Scala 23

https://localhost/section-header/1.5.2%20Executable%20Code%20Examples
https://github.com/handsonscala/handsonscala/blob/v1/examples
https://localhost/section-header/1.5.3%20Exercises
https://github.com/handsonscala/handsonscala/tree/v1/examples/6.1%20-%20MergeSort
https://github.com/handsonscala/handsonscala/tree/v1/examples/6.7%20-%20ImmutableTrie

1.5.4 Resources
The last set of files in the handsonscala/handsonscala Github respository are the resources: sample data
files that are used to exercise the code in a chapter. These are available at:

https://github.com/handsonscala/handsonscala/blob/v1/resources

For the chapters that make use of these resource files, you can download them by going to the linked file on
Github, clicking the Raw button to view the raw contents of the file in the browser, and then Cmd-S/Ctrl-S
to save the file to your disk for your code to access.

1.5.5 Online Discussion
For further help or discussion about this book, feel free to visit our online chat room below. There you may
be able to find other readers to compare notes with or discuss the topics presented in this book:

http://www.handsonscala.com/chat

There are also chapter-specific discussion threads, which will be linked to at the end of each chapter. You
can use these threads to discuss topics specific to each chapter, without it getting mixed up in other
discussion. A full listing of these chapter-specific discussion threads can be found at the following URLs:

http://www.handsonscala.com/discuss (listing of all chapter discussions)

http://www.handsonscala.com/discuss/2 (chapter 2 discussion)

1.6 Conclusion
This first chapter should have given you an idea of what this book is about, and what you can expect
working your way through it. Now that we have covered how this book works, we will proceed to set up
your Scala development environment that you will be using for the rest of this book.

Discuss Chapter 1 online at https://www.handsonscala.com/discuss/1

Chapter 1 Hands-on Scala 24

https://localhost/section-header/1.5.4%20Resources
https://github.com/handsonscala/handsonscala/blob/v1/resources
https://localhost/section-header/1.5.5%20Online%20Discussion
http://www.handsonscala.com/chat
http://www.handsonscala.com/discuss
http://www.handsonscala.com/discuss/2
https://localhost/section-header/1.6%20Conclusion
https://www.handsonscala.com/discuss/1

2
Setting Up

2.1 Windows Setup (Optional) 26

2.2 Installing Java 27

2.3 Installing Ammonite 28

2.4 Installing Mill 31

2.5 IDE Support 34

Snippet 2.1: getting started with the Ammonite Scala REPL

In this chapter, we will set up a simple Scala programming environment, giving you the ability to write, run,
and test your Scala code. We will use this setup throughout the rest of the book. It will be a simple setup,
but enough so you can get productive immediately with the Scala language.

Setting up your development environment is a crucial step in learning a new programming language. Make
sure you get the setup in this chapter working. If you have issues, come to the online chat room
https://www.handsonscala.com/chat to get help resolving them so you can proceed with the rest of the
book in peace without tooling-related distractions.

$ amm

Loading...

Welcome to the Ammonite Repl 2.2.0 (Scala 2.13.2 Java 11.0.7)

@ 1 + 1

res0: Int = 2

@ println("hello world" + "!" * 10)

hello world!!!!!!!!!! </> 2.1.scala

25

https://localhost/section-header/2%20Setting%20Up
https://www.handsonscala.com/chat
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.1.scala

We will be installing following tools for writing and running Scala code:

Java, the underlying runtime which Scala runs on

Ammonite, a lightweight REPL and script runner

Mill, a build tool for larger Scala projects

Intellij IDEA, an integrated development environment that supports Scala

VSCode, a lightweight text editor with support for Scala

These tools will be all you need from your first line of Scala code to building and deploying production
systems in Scala.

2.1 Windows Setup (Optional)
If you are on Windows, the easiest way to get started using Scala is to use the Windows Subsystem for Linux
2 (WSL2) to provide a unix-like environment to run your code in. This can be done by following the
documentation on the Microsoft website:

https://docs.microsoft.com/en-us/windows/wsl/wsl2-install

WSL2 allows you to choose which Linux environment to host on your Windows computer. For this book, we
will be using Ubuntu 18.04 LTS.

Completing the setup, you should have a Ubuntu terminal open with a standard linux filesystem and your
Windows filesystem available under the /mnt/c/ folder:

The files in /mnt/c/ are shared between your Windows environment and your Linux environment:

You can edit your code on Windows, and run it through the terminal on Linux.

You can generate files on disk on Linux, and view them in the Windows Explorer

Many of the chapters in this book assume you are running your code in WSL2's Ubuntu/Linux environment,
while graphical editors like IntelliJ or VSCode will need to be running on your Windows environment, and
WSL2 allows you to swap between Linux and Windows seamlessly. While the Scala language can also be
developed directly on Windows, using WSL2 will allow you to avoid compatibility issues and other
distractions as you work through this book.

$ cd /mnt/c

$ ls

'Documents and Settings' PerfLogs 'Program Files (x86)' Recovery

'Program Files' ProgramData Recovery.txt Users

... </> 2.2.bash

Chapter 2 Setting Up 26

https://localhost/section-header/2.1%20Windows%20Setup%20(Optional)
https://docs.microsoft.com/en-us/windows/wsl/wsl2-install
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.2.bash

2.2 Installing Java
Scala is a language that runs on the Java Virtual Machine (JVM), and needs Java pre-installed in order to
run. To check if you have Java installed, open up your command line (The Terminal app on Mac OS-X,
WSL2/Ubuntu on Windows) and type in the java -version command. If you see the following output (or
something similar) it means you already have Java installed:

If you already have Java, you can skip forward to Installing Ammonite (2.3). On the other hand, if you see
something like the following, it means you do not have Java installed yet:

You can download and install a version of the JVM (we will be using version 11 in our examples) via one of
the following websites:

https://adoptopenjdk.net/?variant=openjdk11&jvmVariant=hotspot

https://docs.aws.amazon.com/corretto/latest/corretto-11-ug/downloads-list.html

The installation instructions vary per operating system, but there are instructions provided for Windows,
Mac OS-X, and different flavors of Linux (.deb and .rpm bundles). Once you have downloaded and installed
Java, go back to your command line and make sure that running the java -version command correctly
produces the above output.

If you are installing Java through the terminal, e.g. on a WSL Ubuntu distribution or on a headless server,
you can do so through your standard package manager. e.g. on Ubuntu 18.04 that would mean the
following commands:

Java versions have a high degree of compatibility, so as long as you have some version of Java installed that
should be enough to make the examples in this book work regardless of which specific version it is.

$ java -version

openjdk version "11.0.7" 2020-04-14

OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.7+9)

OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.7+9, mixed mode) </> 2.3.bash

$ java -version

-bash: java: command not found </> 2.4.bash

$ sudo apt update

$ sudo apt install default-jdk

$ java -version

openjdk version "11.0.6" 2020-01-14

OpenJDK Runtime Environment (build 11.0.6+10-post-Ubuntu1ubuntu118.04.1)

OpenJDK 64-Bit Server VM (build 11.0.6+10-post-Ubuntu-1ubuntu118.04.1, ...) </> 2.5.bash

Chapter 2 Setting Up 27

https://localhost/section-header/2.2%20Installing%20Java
https://adoptopenjdk.net/?variant=openjdk11&jvmVariant=hotspot
https://docs.aws.amazon.com/corretto/latest/corretto-11-ug/downloads-list.html
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.3.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.4.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.5.bash

2.3 Installing Ammonite
On Mac OS-X, Linux, and Windows WSL2, we can install Ammonite via the following command line
commands:

This should open up the following Ammonite Scala REPL:

Once you see this output, it means you are ready to go. You can exit Ammonite using Ctrl-D.

On Max OS-X, Ammonite is also available through the Homebrew package manager via brew install
ammonite-repl

2.3.1 The Scala REPL
The Ammonite REPL is an interactive Scala command-line in which you can enter code expressions and have
their result printed:

Invalid code prints an error:

You can use tab-completion after a . to display the available methods on a particular object, a partial
method name to filter that listing, or a complete method name to display the method signatures:

$ sudo curl -L https://github.com/lihaoyi/Ammonite/releases/download/2.2.0/2.13-2.2.0 \

 -o /usr/local/bin/amm

$ sudo chmod +x /usr/local/bin/amm

$ amm </> 2.6.bash

Loading...

Welcome to the Ammonite Repl 2.2.0 (Scala 2.13.2 Java 11.0.7)

@ </> 2.7.scala

@ 1 + 1

res0: Int = 2

@ "i am cow".substring(2, 4)

res1: String = "am" </> 2.8.scala

@ "i am cow".substing(2, 3)

cmd0.sc:1: value substing is not a member of String

did you mean substring?

val res0 = "i am cow".substing(2, 3)

 ^

Compilation Failed </> 2.9.scala

Chapter 2 Setting Up 28

https://localhost/section-header/2.3%20Installing%20Ammonite
https://localhost/section-header/2.3.1%20The%20Scala%20REPL
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.6.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.7.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.8.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.9.scala

If a REPL command is taking too long to run, you can kill it via Ctrl-C:

2.3.2 Scala Scripts
In addition to providing a REPL, Ammonite can run Scala Script files. A Scala Script is any file containing
Scala code, ending in .sc. Scala Scripts are a lightweight way of running Scala code that is more convenient,
though less configurable, than using a fully-featured build tool like Mill.

For example, we can create the following file myScript.sc, using any text editor of your choice (Vim,
Sublime Text, VSCode, etc.):

Note that in scripts, you need to println each expression since scripts do not echo out their values. After
that, you can then run the script via amm myScript.sc:

@ "i am cow".<tab>

...

exists maxOption stripSuffix ||

filter min stripTrailing

filterNot minBy subSequence

find minByOption substring

@ "i am cow".sub<tab>

subSequence substring

@ "i am cow".substring<tab>

def substring(x$1: Int): String

def substring(x$1: Int, x$2: Int): String </> 2.10.scala

@ while (true) { Thread.sleep(1000); println(1 + 1) } // loop forever

2

2

2

2

2

<Ctrl-C>

Interrupted! (`repl.lastException.printStackTrace` for details)

@ </> 2.11.scala

println(1 + 1) // 2

println("hello" + " " + "world") // hello world

println(List("I", "am", "cow")) // List(I,am,cow)

myScript.sc

</> 2.12.scala

Chapter 2 Setting Up 29

https://localhost/section-header/2.3.2%20Scala%20Scripts
https://www.vim.org/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.10.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.11.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.12.scala

The first time you run the script file, it will take a moment to compile the script to an executable.
Subsequent runs will be faster since the script is already compiled.

2.3.2.1 Watching Scripts

If you are working on a single script, you can use the amm -w or amm --watch command to watch a script
and re-run it when things change:

Now whenever you make changes to the script file, it will automatically get re-compiled and re-run. This is
much faster than running it over and over manually, and is convenient when you are actively working on a
single script to try and get it right.

You can edit your Scala scripts with whatever editor you feel comfortable with: IntelliJ (2.5.1), VSCode
(2.5.3), or any other text editor.

2.3.3 Using Scripts from the REPL
You can open up a REPL with access to the functions in a Scala Script by running amm with the --predef
flag. For example, given the following script:

You can then open a REPL with access to it as follows:

This is convenient when your code snippet is large enough that you want to save it to a file and edit it in a
proper editor, but you still want to use the Scala REPL to interactively test its behavior.

$ amm myScript.sc

Compiling /Users/lihaoyi/myScript.sc

2

hello world

List(I, am, cow) </> 2.13.bash

$ amm -w myScript.sc

2

hello world

am

Watching for changes to 2 files... (Ctrl-C to exit) </> 2.14.bash

def hello(n: Int) = {

 "hello world" + "!" * n

}

myScript.sc

</> 2.15.scala

$ amm --predef myScript.sc

Loading...

Welcome to the Ammonite Repl 2.2.0 (Scala 2.13.2 Java 11.0.7)

@ hello(12)

res0: String = "hello world!!!!!!!!!!!!" </> 2.16.bash

Chapter 2 Setting Up 30

https://localhost/section-header/2.3.2.1%20Watching%20Scripts
https://localhost/section-header/2.3.3%20Using%20Scripts%20from%20the%20REPL
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.13.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.14.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.15.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.16.bash

Note that if you make changes to the script file, you need to exit the REPL using Ctrl-D and re-open it to
make use of the modified script. You can also combine --predef with --watch/-w, in which case when you
exit with Ctrl-D it will automatically restart the REPL if the script file has changed.

2.4 Installing Mill
Mill is a build tool for Scala projects, designed for working with larger Scala projects. While the Ammonite
REPL and scripts are great for small pieces of code, they lack support for things like running unit tests,
packaging your code, deployment, and other such tasks. For larger projects that require such things, you
need to use a build tool like Mill.

2.4.1 Mill Projects
The easiest way to get started with Mill is to download the example project:

You can see that the example project has 4 files. A build.sc file that contains the project definition,
defining a module foo with a test module test inside:

The test module definition above comes with a dependency on one third party library:
ivy"com.lihaoyi::utest:0.7.4". We will see other libraries as we progress through the book and how to use
them in our Mill projects.

$ curl -L https://github.com/lihaoyi/mill/releases/download/0.8.0/0.8.0-example-3.zip \

 -o example-3.zip

$ unzip example-3.zip

$ cd example-3

$ find . -type f

./build.sc

./mill

./foo/test/src/ExampleTests.scala

./foo/src/Example.scala </> 2.17.bash

import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.2"

 object test extends Tests {

 def ivyDeps = Agg(ivy"com.lihaoyi::utest:0.7.4")

 def testFrameworks = Seq("utest.runner.Framework")

 }

}

build.sc

</> 2.18.scala

Chapter 2 Setting Up 31

https://localhost/section-header/2.4%20Installing%20Mill
https://localhost/section-header/2.4.1%20Mill%20Projects
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.17.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.18.scala

The Scala code for the foo module lives inside the foo/src/ folder:

While the Scala code for the foo.test test module lives inside the foo/test/src/ folder:

Lastly, the example project contains a mill file. You can use the mill file to compile and run the project,
via ./mill ...:

Note that the first time you run ./mill, it will take a few seconds to download the correct version of Mill
for you to use. While above we run both ./mill foo.compile and ./mill foo.run, if you want to run
your code you can always just run ./mill foo.run. Mill will automatically re-compile your code if
necessary before running it.

To use Mill in any other project, or to start a brand-new project using Mill, it is enough to copy over the
mill script file to that project's root directory. You can also download the startup script via:

package foo

object Example {

 def main(args: Array[String]): Unit = {

 println(hello())

 }

 def hello(): String = "Hello World"

}

foo/src/Example.scala

</> 2.19.scala

package foo

import utest._

object ExampleTests extends TestSuite {

 def tests = Tests {

 test("hello") {

 val result = Example.hello()

 assert(result == "Hello World")

 result

 }

 }

}

foo/test/src/ExampleTests.scala

</> 2.20.scala

$./mill foo.compile

Compiling /Users/lihaoyi/test2/example-1/build.sc

...

7 warnings found

[info] Compiling 1 Scala source to /Users/lihaoyi/test2/example-1/out/foo/compile/dest...

[info] Done compiling.

$./mill foo.run

Hello World </> 2.21.bash

Chapter 2 Setting Up 32

https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.19.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.20.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.21.bash

2.4.2 Running Unit Tests
To get started with testing in Mill, you can run ./mill foo.test:

This shows the successful result of the one test that comes built in to the example repository.

2.4.3 Creating a Stand-Alone Executable
So far, we have only been running code within the Mill build tool. But what if we want to prepare our code
to run without Mill, e.g. to deploy it to production systems? To do so, you can run ./mill foo.assembly:

This creates an out.jar file that can be distributed, deployed and run without the Mill build tool in place.
By default, Mill creates the output for the foo.assembly task in out/foo/assembly/dest, but you can use
./mill show to print out the full path:

You can run the executable assembly to verify that it does what you expect:

Now your code is ready to be deployed!

In general, running Scala code in a Mill project requires a bit more setup than running it interactively in the
Ammonite Scala REPL or Scala Scripts, but the ability to easily test and package your code is crucial for any
production software.

$ curl -L https://github.com/lihaoyi/mill/releases/download/0.8.0/0.8.0 -o mill

$ chmod +x mill </> 2.22.bash

$./mill foo.test

-------------------------------- Running Tests --------------------------------

+ foo.ExampleTests.hello 10ms Hello World </> 2.23.bash

$./mill foo.assembly

$./mill show foo.assembly

"ref:18e58778:/Users/lihaoyi/test/example-3/out/foo/assembly/dest/out.jar" </> 2.24.scala

$ out/foo/assembly/dest/out.jar

Hello World </> 2.25.bash

Chapter 2 Setting Up 33

https://localhost/section-header/2.4.2%20Running%20Unit%20Tests
https://localhost/section-header/2.4.3%20Creating%20a%20Stand-Alone%20Executable
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.22.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.23.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.24.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/2.25.bash

2.5 IDE Support
The most common editors used for working with Scala programs is IntelliJ or VSCode. This section will walk
you through installing both of them, but you only really need to install whichever one you prefer to make
your way through this book.

2.5.1 Installing IntelliJ for Scala
You can install IntelliJ from the following website. The free Community edition will be enough.

https://www.jetbrains.com/idea/download

Next, we need to install the IntelliJ Scala plugin, either via the loading screen:

or via the menu bar

From there, go to the Plugins page:

Chapter 2 Setting Up 34

https://localhost/section-header/2.5%20IDE%20Support
https://localhost/section-header/2.5.1%20Installing%20IntelliJ%20for%20Scala
https://www.jetbrains.com/idea/download

Search for Scala and click Install. You will then need to re-start the editor.

2.5.2 Integrating IntelliJ with Mill
Once you have IntelliJ installed on your machine, you can load your Mill project via the following terminal
command:

Next, use IntelliJ's File / Open menu item and select the folder your build.sc file is in. That will open up
the Mill project, with IntelliJ providing code assistance when editing all the code:

$./mill mill.scalalib.GenIdea/idea

Chapter 2 Setting Up 35

https://localhost/section-header/2.5.2%20Integrating%20IntelliJ%20with%20Mill

You may see a Project JDK is not defined: Setup JDK prompt: in that case, click the Setup JDK link
and select the version of Java that you installed earlier (2.2). Note that every time you make changes to add
dependencies or add new modules to your build.sc, you need to re-run the ./mill
mill.scalalib.GenIdea/idea command, and restart IntelliJ to have it pick up the changes.

2.5.3 Visual Studio Code Support
Scala also comes with support for the Visual Studio Code text editor, via the Metals plugin:

https://code.visualstudio.com/

Chapter 2 Setting Up 36

https://localhost/section-header/2.5.3%20Visual%20Studio%20Code%20Support
https://code.visualstudio.com/

To use VSCode within a Mill build, we need to specify the Mill version in a .mill-version file. Then you can
open the folder that your Mill build is in and select Import build:

Sometimes the import may time out if your computer is slow or under load, and may need to be retried. If
you have trouble getting the import to work even after retrying, you can try using a more recent version of
the Metals plugin. Use F1, search for Open Settings (UI), and update Extensions > Metals > Server
Version e.g. to the latest SNAPSHOT version on the Metals/VSCode website:

https://scalameta.org/metals/docs/editors/vscode.html#using-latest-metals-snapshot

You can also try enabling VSCode Remote Development, by using F1 and searching for Remote-WSL: Reopen
in WSL. This will run the VSCode code analysis logic inside the Ubuntu virtual machine, which may be more
reliable than doing so directly on the Windows host environment:

https://code.visualstudio.com/docs/remote/wsl

Once complete, you should be able to show method signature by mousing over them with Cmd or Ctrl.

$ echo "0.8.0" > .mill-version

Chapter 2 Setting Up 37

https://scalameta.org/metals/docs/editors/vscode.html#using-latest-metals-snapshot
https://code.visualstudio.com/docs/remote/wsl

Metals also supports other editors such as Vim, Sublime Text, Atom, and others. For more details, refer to
their documentation for how to install the relevant editor plugin:

https://scalameta.org/metals/docs/editors/overview.html

2.6 Conclusion
By now, you should have three main things set up:

Your Ammonite Scala REPL and Script Runner, that you can run via amm or amm myScript.sc

A Mill example project, which you can run via ./mill foo.run or test via ./mill foo.test

Either IntelliJ or VSCode support for your Mill example projects

We will be using Mill as the primary build tool throughout this book, as it is the easiest to get started with.
You may also encounter alternate build tools in the wild:

SBT: https://www.scala-sbt.org/

Gradle: https://docs.gradle.org/current/userguide/scala_plugin.html

Maven: https://docs.scala-lang.org/tutorials/scala-with-maven.html

Before you move on to the following chapters, take some time to experiment with these tools: write some
code in the Ammonite REPL, create some more scripts, add code and tests to the Mill example projects and
run them. These are the main tools that we will use throughout this book.

Discuss Chapter 2 online at https://www.handsonscala.com/discuss/2

Chapter 2 Setting Up 38

https://scalameta.org/metals/docs/editors/overview.html
https://localhost/section-header/2.6%20Conclusion
https://www.scala-sbt.org/
https://docs.gradle.org/current/userguide/scala_plugin.html
https://docs.scala-lang.org/tutorials/scala-with-maven.html
https://www.handsonscala.com/discuss/2

3
Basic Scala

3.1 Values 40

3.2 Loops, Conditionals, Comprehensions 47

3.3 Methods and Functions 51

3.4 Classes and Traits 55

Snippet 3.1: the popular "FizzBuzz" programming challenge, implemented in Scala

This chapter is a quick tour of the Scala language. For now we will focus on the basics of Scala that are
similar to what you might find in any mainstream programming language.

The goal of this chapter is to get familiar you enough that you can take the same sort of code you are used
to writing in some other language and write it in Scala without difficulty. This chapter will not cover more
Scala-specific programming styles or language features: those will be left for Chapter 5: Notable Scala
Features.

for (i <- Range.inclusive(1, 100)) {

 println(

 if (i % 3 == 0 && i % 5 == 0) "FizzBuzz"

 else if (i % 3 == 0) "Fizz"

 else if (i % 5 == 0) "Buzz"

 else i

)

} </> 3.1.scala

39

https://localhost/section-header/3%20Basic%20Scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.1.scala

For this chapter, we will write our code in the Ammonite Scala REPL:

3.1 Values
3.1.1 Primitives
Scala has the following sets of primitive types:

These types are identical to the primitive types in Java, and would be similar to those in C#, C++, or any
other statically typed programming language. Each type supports the typical operations, e.g. booleans
support boolean logic || &&, numbers support arithmetic + - * / and bitwise operations | &, and so on. All
values support == to check for equality and != to check for inequality.

Numbers default to 32-bit Ints. Precedence for arithmetic operations follows other programming
languages: * and / have higher precedence than + or -, and parentheses can be used for grouping.

Ints are signed and wrap-around on overflow, while 64-bit Longs suffixed with L have a bigger range and
do not overflow as easily:

$ amm

Loading...

Welcome to the Ammonite Repl 2.2.0 (Scala 2.13.2 Java 11.0.7)

@ </> 3.2.bash

Type Values

Byte -128 to 127

Short -32,768 to 32,767

Int -2,147,483,648 to 2,147,483,647

Long -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Type Values

Boolean true, false

Char 'a', '0', 'Z', '包', ...

Float 32-bit Floating point

Double 64-bit Floating point

@ 1 + 2 * 3

res0: Int = 7

@ (1 + 2) * 3

res1: Int = 9 </> 3.3.scala

Chapter 3 Basic Scala 40

https://localhost/section-header/3.1%20Values
https://localhost/section-header/3.1.1%20Primitives
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.2.bash
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.3.scala

Apart from the basic operators, there are a lot of useful methods on java.lang.Integer and
java.lang.Long:

64-bit Doubles are specified using the 1.0 syntax, and have a similar set of arithmetic operations. You can
also use the 1.0F syntax to ask for 32-bit Floats:

32-bit Floats take up half as much memory as 64-bit Doubles, but are more prone to rounding errors during
arithmetic operations. java.lang.Float and java.lang.Double have a similar set of useful operations you
can perform on Floats and Doubles.

3.1.2 Strings
Strings in Scala are arrays of 16-bit Chars:

Strings can be sliced with .substring, constructed via concatenation using +, or via string interpolation by
prefixing the literal with s"..." and interpolating the values with $ or ${...}:

@ 2147483647

res2: Int = 2147483647

@ 2147483647 + 1

res3: Int = -2147483648 </> 3.4.scala

@ 2147483647L

res4: Long = 2147483647L

@ 2147483647L + 1L

res5: Long = 2147483648L </> 3.5.scala

@ java.lang.Integer.<tab>

BYTES decode numberOfTrailingZeros

signum MAX_VALUE divideUnsigned

getInteger parseUnsignedInt toBinaryString

...

@ java.lang.Integer.toBinaryString(123)

res6: String = "1111011"

@ java.lang.Integer.numberOfTrailingZeros(24)

res7: Int = 3 </> 3.6.scala

@ 1.0 / 3.0

res8: Double = 0.3333333333333333

@ 1.0F / 3.0F

res9: Float = 0.33333334F </> 3.7.scala

@ "hello world"

res10: String = "hello world" </> 3.8.scala

Chapter 3 Basic Scala 41

https://localhost/section-header/3.1.2%20Strings
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.4.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.5.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.6.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.7.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.8.scala

3.1.3 Local Values and Variables
You can name local values with the val keyword:

Note that vals are immutable: you cannot re-assign the val x to a different value after the fact. If you want
a local variable that can be re-assigned, you must use the var keyword.

In general, you should try to use val where possible: most named values in your program likely do not need
to be re-assigned, and using val helps prevent mistakes where you re-assign something accidentally. Use
var only if you are sure you will need to re-assign something later.

Both vals and vars can be annotated with explicit types. These can serve as documentation for people
reading your code, as well as a way to catch errors if you accidentally assign the wrong type of value to a
variable

@ "hello world".substring(0, 5)

res11: String = "hello"

@ "hello world".substring(5, 10)

res12: String = " worl"

</> 3.9.scala

@ "hello" + 1 + " " + "world" + 2

res13: String = "hello1 world2"

@ val x = 1; val y = 2

@ s"Hello $x World $y"

res15: String = "Hello 1 World 2"

@ s"Hello ${x + y} World ${x - y}"

res16: String = "Hello 3 World -1"
</> 3.10.scala

@ val x = 1

@ x + 2

res18: Int = 3 </> 3.11.scala

@ x = 3

cmd41.sc:1: reassignment to val

val res26 = x = 3

 ^

Compilation Failed

</> 3.12.scala

@ var y = 1

@ y + 2

res20: Int = 3

@ y = 3

@ y + 2

res22: Int = 5 </> 3.13.scala

Chapter 3 Basic Scala 42

https://localhost/section-header/3.1.3%20Local%20Values%20and%20Variables
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.9.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.10.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.11.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.12.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.13.scala

3.1.4 Tuples
Tuples are fixed-length collections of values, which may be of different types:

Above, we are storing a tuple into the local value t using the (a, b, c) syntax, and then using ._1, ._2
and ._3 to extract the values out of it. The fields in a tuple are immutable.

The type of the local value t can be annotated as a tuple type:

You can also use the val (a, b, c) = t syntax to extract all the values at once, and assign them to
meaningful names:

@ val x: Int = 1

@ var s: String = "Hello"

s: String = "Hello"

@ s = "World"

</> 3.14.scala

@ val z: Int = "Hello"

cmd33.sc:1: type mismatch;

 found : String("Hello")

 required: Int

val z: Int = "Hello"

 ^

Compilation Failed </> 3.15.scala

@ val t = (1, true, "hello")

t: (Int, Boolean, String) = (1, true, "hello")

@ t._1

res27: Int = 1

@ t._2

res28: Boolean = true

@ t._3

res29: String = "hello" </> 3.16.scala

@ val t: (Int, Boolean, String) = (1, true, "hello")

@ val (a, b, c) = t

a: Int = 1

b: Boolean = true

c: String = "hello"

</> 3.17.scala

@ a

res31: Int = 1

@ b

res32: Boolean = true

@ c

res33: String = "hello" </> 3.18.scala

Chapter 3 Basic Scala 43

https://localhost/section-header/3.1.4%20Tuples
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.14.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.15.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.16.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.17.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.18.scala

Tuples come in any size from 1 to 22 items long:

Most tuples should be relatively small. Large tuples can easily get confusing: while working with ._1 ._2
and ._3 is probably fine, when you end up working with ._11 ._13 it becomes easy to mix up the different
fields. If you find yourself working with large tuples, consider defining a Class (3.4) or Case Class that we will
see in Chapter 5: Notable Scala Features.

3.1.5 Arrays
Arrays are instantiated using the Array[T](a, b, c) syntax, and entries within each array are retrieved
using a(n):

The type parameter inside the square brackets [Int] or [String] determines the type of the array, while
the parameters inside the parenthesis (1, 2, 3, 4) determine its initial contents. Note that looking up an
Array by index is done via parentheses a(3) rather than square brackets a[3] as is common in many other
programming languages.

You can omit the explicit type parameter and let the compiler infer the Array's type, or create an empty
array of a specified type using new Array[T](length), and assign values to each index later:

@ val t = (1, true, "hello", 'c', 0.2, 0.5f, 12345678912345L)

t: (Int, Boolean, String, Char, Double, Float, Long) = (

 1,

 true,

 "hello",

 'c',

 0.2,

 0.5F,

 12345678912345L

) </> 3.19.scala

@ val a = Array[Int](1, 2, 3, 4)

@ a(0) // first entry, array indices start from 0

res36: Int = 1

@ a(3) // last entry

res37: Int = 4

@ val a2 = Array[String]("one", "two", "three", "four")

a2: Array[String] = Array("one", "two", "three", "four")

@ a2(1) // second entry

res39: String = "two" </> 3.20.scala

Chapter 3 Basic Scala 44

https://localhost/section-header/3.1.5%20Arrays
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.19.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.20.scala

For Arrays created using new Array, all entries start off with the value 0 for numeric arrays, false for
Boolean arrays, and null for Strings and other types. Arrays are mutable but fixed-length: you can change
the value of each entry but cannot change the number of entries by adding or removing values. We will see
how to create variable-length collections later in Chapter 4: Scala Collections.

Multi-dimensional arrays, or arrays-of-arrays, are also supported:

Multi-dimensional arrays can be useful to represent grids, matrices, and similar values.

@ val a = Array(1, 2, 3, 4)

a: Array[Int] = Array(1, 2, 3, 4)

@ val a2 = Array(

 "one", "two",

 "three", "four"

)

a2: Array[String] = Array(

 "one", "two",

 "three", "four"

) </> 3.21.scala

@ val a = new Array[Int](4)

a: Array[Int] = Array(0, 0, 0, 0)

@ a(0) = 1

@ a(2) = 100

@ a

res45: Array[Int] = Array(1, 0, 100, 0)

</> 3.22.scala

@ val multi = Array(Array(1, 2), Array(3, 4))

multi: Array[Array[Int]] = Array(Array(1, 2), Array(3, 4))

@ multi(0)(0)

res47: Int = 1

@ multi(0)(1)

res48: Int = 2

@ multi(1)(0)

res49: Int = 3

@ multi(1)(1)

res50: Int = 4 </> 3.23.scala

Chapter 3 Basic Scala 45

https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.21.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.22.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.23.scala

3.1.6 Options
Scala's Option[T] type allows you to represent a value that may or may not exist. An Option[T] can either
be Some(v: T) indicating that a value is present, or None indicating that it is absent:

The above example shows you how to construct Options using Some and None, as well as matching on them
in the same way. Many APIs in Scala rely on Options rather than nulls for values that may or may not exist.
In general, Options force you to handle both cases of present/absent, whereas when using nulls it is easy
to forget whether or not a value is null-able, resulting in confusing NullPointerExceptions at runtime. We
will go deeper into pattern matching in Chapter 5: Notable Scala Features.

Options contain some helper methods that make it easy to work with the optional value, such as
getOrElse, which substitutes an alternate value if the Option is None:

Options are very similar to a collection whose size is 0 or 1. You can loop over them like normal collections,
or transform them with standard collection operations like .map.

@ def hello(title: String, firstName: String, lastNameOpt: Option[String]) = {

 lastNameOpt match {

 case Some(lastName) => println(s"Hello $title. $lastName")

 case None => println(s"Hello $firstName")

 }

 }

@ hello("Mr", "Haoyi", None)

Hello Haoyi

@ hello("Mr", "Haoyi", Some("Li"))

Hello Mr. Li </> 3.24.scala

@ Some("Li").getOrElse("<unknown>")

res54: String = "Li"

@ None.getOrElse("<unknown>")

res55: String = "<unknown>" </> 3.25.scala

Chapter 3 Basic Scala 46

https://localhost/section-header/3.1.6%20Options
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.24.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.25.scala

Above, we combine .map and .getOrElse to print out the length of the name if present, and otherwise
print -1. We will learn more about collection operations in Chapter 4: Scala Collections.

3.2 Loops, Conditionals, Comprehensions
3.2.1 For-Loops
For-loops in Scala are similar to "foreach" loops in other languages: they directly loop over the elements in a
collection, without needing to explicitly maintain and increment an index. If you want to loop over a range
of indices, you can loop over a Range such as Range(0, 5):

You can loop over nested Arrays by placing multiple <-s in the header of the loop:

@ def hello2(name: Option[String]) = {

 for (s <- name) println(s"Hello $s")

 }

@ hello2(None) // does nothing

@ hello2(Some("Haoyi"))

Hello Haoyi

</> 3.26.scala

@ def nameLength(name: Option[String]) = {

 name.map(_.length).getOrElse(-1)

 }

@ nameLength(Some("Haoyi"))

res60: Int = 5

@ nameLength(None)

res61: Int = -1 </> 3.27.scala

See example 3.1 - Values

@ var total = 0

@ val items = Array(1, 10, 100, 1000)

@ for (item <- items) total += item

@ total

res65: Int = 1111

</> 3.28.scala

@ var total = 0

@ for (i <- Range(0, 5)) {

 println("Looping " + i)

 total = total + i

 }

Looping 0

Looping 1

Looping 2

Looping 3

Looping 4

@ total

res68: Int = 10 </> 3.29.scala

Chapter 3 Basic Scala 47

https://localhost/section-header/3.2%20Loops,%20Conditionals,%20Comprehensions
https://localhost/section-header/3.2.1%20For-Loops
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.26.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.27.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.1%20-%20Values
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.28.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.29.scala

Loops can have guards using an if syntax:

3.2.2 If-Else
if-else conditionals are similar to those in any other programming language. One thing to note is that in
Scala if-else can also be used as an expression, similar to the a ? b : c ternary expressions in other
languages. Scala does not have a separate ternary expression syntax, and so the if-else can be directly
used as the right-hand-side of the total += below.

3.2.3 Fizzbuzz
Now that we know the basics of Scala syntax, let's consider the common "Fizzbuzz" programming challenge:

Write a short program that prints each number from 1 to 100 on a new line.

For each multiple of 3, print "Fizz" instead of the number.

For each multiple of 5, print "Buzz" instead of the number.

For numbers which are multiples of both 3 and 5, print "FizzBuzz" instead of the number.

@ val multi = Array(Array(1, 2, 3), Array(4, 5, 6))

@ for (arr <- multi; i <- arr) println(i)

1

2

3

4

5

6 </> 3.30.scala

@ for (arr <- multi; i <- arr; if i % 2 == 0) println(i)

2

4

6 </> 3.31.scala

@ var total = 0

@ for (i <- Range(0, 10)) {

 if (i % 2 == 0) total += i

 else total += 2

 }

@ total

res74: Int = 30 </> 3.32.scala

@ var total = 0

@ for (i <- Range(0, 10)) {

 total += (if (i % 2 == 0) i else 2)

 }

@ total

res77: Int = 30

</> 3.33.scala

Chapter 3 Basic Scala 48

https://localhost/section-header/3.2.2%20If-Else
https://localhost/section-header/3.2.3%20Fizzbuzz
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.30.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.31.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.32.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.33.scala

We can accomplish this as follows:

Since if-else is an expression, we can also write it as:

@ for (i <- Range.inclusive(1, 100)) {

 if (i % 3 == 0 && i % 5 == 0) println("FizzBuzz")

 else if (i % 3 == 0) println("Fizz")

 else if (i % 5 == 0) println("Buzz")

 else println(i)

 }

1

2

Fizz

4

Buzz

Fizz

7

8

Fizz

Buzz

11

Fizz

13

14

FizzBuzz

... </> 3.34.scala

@ for (i <- Range.inclusive(1, 100)) {

 println(

 if (i % 3 == 0 && i % 5 == 0) "FizzBuzz"

 else if (i % 3 == 0) "Fizz"

 else if (i % 5 == 0) "Buzz"

 else i

)

 } </> 3.35.scala

Chapter 3 Basic Scala 49

https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.34.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.35.scala

3.2.4 Comprehensions
Apart from using for to define loops that perform some action, you can also use for together with yield to
transform a collection into a new collection:

Similar to loops, you can filter which items end up in the final collection using an if guard inside the
parentheses:

Comprehensions can also take multiple input arrays, a and b below. This flattens them out into one final
output Array, similar to using a nested for-loop:

You can also replace the parentheses () with curly brackets {} if you wish to spread out the nested loops
over multiple lines, for easier reading. Note that the order of <-s within the nested comprehension matters,
just like how the order of nested loops affects the order in which the loop actions will take place:

@ val a = Array(1, 2, 3, 4)

@ val a2 = for (i <- a) yield i * i

a2: Array[Int] = Array(1, 4, 9, 16)

@ val a3 = for (i <- a) yield "hello " + i

a3: Array[String] = Array("hello 1", "hello 2", "hello 3", "hello 4") </> 3.36.scala

@ val a4 = for (i <- a if i % 2 == 0) yield "hello " + i

a4: Array[String] = Array("hello 2", "hello 4") </> 3.37.scala

@ val a = Array(1, 2); val b = Array("hello", "world")

@ val flattened = for (i <- a; s <- b) yield s + i

flattened: Array[String] = Array("hello1", "world1", "hello2", "world2") </> 3.38.scala

@ val flattened = for{

 i <- a

 s <- b

 } yield s + i

flattened: Array[String] = Array("hello1", "world1", "hello2", "world2")

@ val flattened2 = for{

 s <- b

 i <- a

 } yield s + i

flattened2: Array[String] = Array("hello1", "hello2", "world1", "world2") </> 3.39.scala

Chapter 3 Basic Scala 50

https://localhost/section-header/3.2.4%20Comprehensions
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.36.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.37.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.38.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.39.scala

We can use comprehensions to write a version of FizzBuzz that doesn't print its results immediately to the
console, but returns them as a Seq (short for "sequence"):

We can then use the fizzbuzz collection however we like: storing it in a variable, passing it into methods,
or processing it in other ways. We will cover what you can do with these collections later, in Chapter 4:
Scala Collections.

3.3 Methods and Functions
3.3.1 Methods
You can define methods using the def keyword:

Passing in the wrong type of argument, or missing required arguments, is a compiler error. However, if the
argument has a default value, then passing it is optional.

@ val fizzbuzz = for (i <- Range.inclusive(1, 100)) yield {

 if (i % 3 == 0 && i % 5 == 0) "FizzBuzz"

 else if (i % 3 == 0) "Fizz"

 else if (i % 5 == 0) "Buzz"

 else i.toString

 }

fizzbuzz: IndexedSeq[String] = Vector(

 "1",

 "2",

 "Fizz",

 "4",

 "Buzz",

... </> 3.40.scala

See example 3.2 - LoopsConditionals

@ def printHello(times: Int) = {

 println("hello " + times)

 }

@ printHello(1)

hello 1

@ printHello(times = 2) // argument name provided explicitly

hello 2 </> 3.41.scala

Chapter 3 Basic Scala 51

https://localhost/section-header/3.3%20Methods%20and%20Functions
https://localhost/section-header/3.3.1%20Methods
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.40.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.2%20-%20LoopsConditionals
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.41.scala

3.3.1.1 Returning Values from Methods

Apart from performing actions like printing, methods can also return values. The last expression within the
curly brace {} block is treated as the return value of a Scala method.

You can call the method and print out or perform other computation on the returned value:

@ printHello("1") // wrong type of argument

cmd128.sc:1: type mismatch;

 found : String("1")

 required: Int

val res128 = printHello("1")

 ^

Compilation Failed

</> 3.42.scala

@ def printHello2(times: Int = 0) = {

 println("hello " + times)

 }

@ printHello2(1)

hello 1

@ printHello2()

hello 0 </> 3.43.scala

@ def hello(i: Int = 0) = {

 "hello " + i

 }

@ hello(1)

res96: String = "hello 1" </> 3.44.scala

@ println(hello())

hello 0

@ val helloHello = hello(123) + " " + hello(456)

helloHello: String = "hello 123 hello 456"

@ helloHello.reverse

res99: String = "654 olleh 321 olleh" </> 3.45.scala

Chapter 3 Basic Scala 52

https://localhost/section-header/3.3.1.1%20Returning%20Values%20from%20Methods
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.42.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.43.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.44.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.45.scala

3.3.2 Function Values
You can define function values using the => syntax. Functions values are similar to methods, in that you call
them with arguments and they can perform some action or return some value. Unlike methods, functions
themselves are values: you can pass them around, store them in variables, and call them later.

Note that unlike methods, function values cannot have optional arguments (i.e. with default values) and
cannot take type parameters via the [T] syntax. When a method is converted into a function value, any
optional arguments must be explicitly included, and type parameters fixed to concrete types. Function
values are also anonymous, which makes stack traces involving them less convenient to read than those
using methods.

In general, you should prefer using methods unless you really need the flexibility to pass as parameters or
store them in variables. But if you need that flexibility, function values are a great tool to have.

3.3.2.1 Methods taking Functions

One common use case of function values is to pass them into methods that take function parameters. Such
methods are often called "higher order methods". Below, we have a class Box with a method printMsg
that prints its contents (an Int), and a separate method update that takes a function of type Int => Int
that can be used to update x. You can then pass a function literal into update in order to change the value
of x:

Simple functions literals like i => i + 5 can also be written via the shorthand _ + 5, with the underscore
_ standing in for the function parameter.

@ var g: Int => Int = i => i + 1

@ g(10)

res101: Int = 11

@ g = i => i * 2

@ g(10)

res103: Int = 20 </> 3.46.scala

@ class Box(var x: Int) {

 def update(f: Int => Int) = x = f(x)

 def printMsg(msg: String) = {

 println(msg + x)

 }

 }

</> 3.47.scala

@ val b = new Box(1)

@ b.printMsg("Hello")

Hello1

@ b.update(i => i + 5)

@ b.printMsg("Hello")

Hello6 </> 3.48.scala

Chapter 3 Basic Scala 53

https://localhost/section-header/3.3.2%20Function%20Values
https://localhost/section-header/3.3.2.1%20Methods%20taking%20Functions
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.46.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.47.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.48.scala

This placeholder syntax for function literals also works for multi-argument functions, e.g. (x, y) => x + y
can be written as _ + _.

Any method that takes a function as an argument can also be given a method reference, as long as the
method's signature matches that of the function type, here Int => Int:

3.3.2.2 Multiple Parameter Lists

Methods can be defined to take multiple parameter lists. This is useful for writing higher-order methods
that can be used like control structures, such as the myLoop method below:

The ability to pass function literals to methods is used to great effect in the standard library, to concisely
perform transformations on collections. We will see more of that in Chapter 4: Scala Collections.

@ b.update(_ + 5)

@ b.printMsg("Hello")

Hello11 </> 3.49.scala

@ def increment(i: Int) = i + 1

@ val b = new Box(123)

@ b.update(increment) // Providing a method reference

@ b.update(x => increment(x)) // Explicitly writing out the function literal

@ b.update{x => increment(x)} // Methods taking a single function can be called with {}s

@ b.update(increment(_)) // You can also use the `_` placeholder syntax

@ b.printMsg("result: ")

result: 127 </> 3.50.scala

@ def myLoop(start: Int, end: Int)

 (callback: Int => Unit) = {

 for (i <- Range(start, end)) {

 callback(i)

 }

 }

</> 3.51.scala

@ myLoop(start = 5, end = 10) { i =>

 println(s"i has value ${i}")

 }

i has value 5

i has value 6

i has value 7

i has value 8

i has value 9 </> 3.52.scala

Chapter 3 Basic Scala 54

https://localhost/section-header/3.3.2.2%20Multiple%20Parameter%20Lists
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.49.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.50.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.51.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.52.scala

3.4 Classes and Traits
You can define classes using the class keyword, and instantiate them using new. By default, all arguments
passed into the class constructor are available in all of the class' methods: the (x: Int) above defines both
the private fields as well as the class' constructor. x is thus accessible in the printMsg function, but cannot
be accessed outside the class:

To make x publicly accessible you can make it a val, and to make it mutable you can make it a var:

You can also use vals or vars in the body of a class to store data. These get computed once when the class
is instantiated:

See example 3.3 - MethodsFunctions

@ class Foo(x: Int) {

 def printMsg(msg: String) = {

 println(msg + x)

 }

 }

</> 3.53.scala

@ val f = new Foo(1)

@ f.printMsg("hello")

hello1

@ f.x

cmd120.sc:1: value x is not a member of Foo

Compilation Failed </> 3.54.scala

@ class Bar(val x: Int) {

 def printMsg(msg: String) = {

 println(msg + x)

 }

 } </> 3.55.scala

@ val b = new Bar(1)

@ b.x

res122: Int = 1

</> 3.56.scala

@ class Qux(var x: Int) {

 def printMsg(msg: String) = {

 x += 1

 println(msg + x)

 }

 }

</> 3.57.scala

@ val q = new Qux(1)

@ q.printMsg("hello")

hello2

@ q.printMsg("hello")

hello3 </> 3.58.scala

Chapter 3 Basic Scala 55

https://localhost/section-header/3.4%20Classes%20and%20Traits
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.3%20-%20MethodsFunctions
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.53.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.54.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.55.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.56.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.57.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.58.scala

3.4.1 Traits
traits are similar to interfaces in traditional object-oriented languages: a set of methods that multiple
classes can inherit. Instances of these classes can then be used interchangeably.

Above, we have defined a Point trait with a single method def hypotenuse: Double. The subclasses
Point2D and Point3D both have different sets of parameters, but they both implement def hypotenuse.
Thus we can put both Point2Ds and Point3Ds into our points: Array[Point] and treat them all
uniformly as objects with a def hypotenuse method, regardless of what their actual class is.

@ class Baz(x: Int) {

 val bangs = "!" * x

 def printMsg(msg: String) = {

 println(msg + bangs)

 }

 } </> 3.59.scala

@ val z = new Baz(3)

@ z.printMsg("hello")

hello!!!

</> 3.60.scala

@ trait Point{ def hypotenuse: Double }

@ class Point2D(x: Double, y: Double) extends Point{

 def hypotenuse = math.sqrt(x * x + y * y)

 }

@ class Point3D(x: Double, y: Double, z: Double) extends Point{

 def hypotenuse = math.sqrt(x * x + y * y + z * z)

 }

@ val points: Array[Point] = Array(new Point2D(1, 2), new Point3D(4, 5, 6))

@ for (p <- points) println(p.hypotenuse)

2.23606797749979

8.774964387392123 </> 3.61.scala

See example 3.4 - ClassesTraits

Chapter 3 Basic Scala 56

https://localhost/section-header/3.4.1%20Traits
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.59.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.60.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.61.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.4%20-%20ClassesTraits

3.5 Conclusion
In this chapter, we have gone through a lightning tour of the core Scala language. While the exact syntax
may be new to you, the concepts should be mostly familiar: primitives, arrays, loops, conditionals, methods,
and classes are part of almost every programming language. Next we will look at the core of the Scala
standard library: the Scala Collections.

Exercise: Define a def flexibleFizzBuzz method that takes a String => Unit callback function as
its argument, and allows the caller to decide what they want to do with the output. The caller can
choose to ignore the output, println the output directly, or store the output in a previously-
allocated array they already have handy.

See example 3.5 - FlexibleFizzBuzz

@ flexibleFizzBuzz(s => {} /* do nothing

*/)

@ flexibleFizzBuzz(s => println(s))

1

2

Fizz

4

Buzz

...

</> 3.62.scala

@ var i = 0

@ val output = new Array[String](100)

@ flexibleFizzBuzz{s =>

 output(i) = s

 i += 1

 }

@ output

res125: Array[String] = Array(

 "1",

 "2",

 "Fizz",

 "4",

 "Buzz",

... </> 3.63.scala

Chapter 3 Basic Scala 57

https://localhost/section-header/3.5%20Conclusion
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.5%20-%20FlexibleFizzBuzz
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.62.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.63.scala

Exercise: Write a recursive method printMessages that can receive an array of Msg class instances,
each with an optional parent ID, and use it to print out a threaded fashion. That means that child
messages are print out indented underneath their parents, and the nesting can be arbitrarily deep.

See example 3.6 - PrintMessages

class Msg(val id: Int, val parent: Option[Int], val txt: String)

def printMessages(messages: Array[Msg]): Unit = ... </> 3.64.scala

printMessages(Array(

 new Msg(0, None, "Hello"),

 new Msg(1, Some(0), "World"),

 new Msg(2, None, "I am Cow"),

 new Msg(3, Some(2), "Hear me moo"),

 new Msg(4, Some(2), "Here I stand"),

 new Msg(5, Some(2), "I am Cow"),

 new Msg(6, Some(5), "Here me moo, moo")

))

TestPrintMessages.sc

</> 3.65.scala

#0 Hello

 #1 World

#2 I am Cow

 #3 Hear me moo

 #4 Here I stand

 #5 I am Cow

 #6 Here me moo, moo

expected.txt

</> 3.66.output

Exercise: Define a pair of methods withFileWriter and withFileReader that can be called as
shown below. Each method should take the name of a file, and a function value that is called with a
java.io.BufferedReader or java.io.BufferedWriter that it can use to read or write data. Opening
and closing of the reader/writer should be automatic, such that a caller cannot forget to close the
file. This is similar to Python "context managers" or Java "try-with-resource" syntax.

You can use the Java standard library APIs java.nio.file.Files.newBufferedWriter and
newBufferedReader for working with file readers and writers. We will get more familiar with working
with files and the filesystem in Chapter 7: Files and Subprocesses.

See example 3.7 - ContextManagers

withFileWriter("File.txt") { writer =>

 writer.write("Hello\n"); writer.write("World!")

}

val result = withFileReader("File.txt") { reader =>

 reader.readLine() + "\n" + reader.readLine()

}

assert(result == "Hello\nWorld!")

TestContextManagers.sc

</> 3.67.scala

Discuss Chapter 3 online at https://www.handsonscala.com/discuss/3

Chapter 3 Basic Scala 58

https://github.com/handsonscala/handsonscala/tree/v1/examples/3.6%20-%20PrintMessages
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.64.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.65.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.66.output
https://github.com/handsonscala/handsonscala/tree/v1/examples/3.7%20-%20ContextManagers
https://github.com/handsonscala/handsonscala/blob/v1/snippets/3.67.scala
https://www.handsonscala.com/discuss/3

4
Scala Collections

4.1 Operations 60

4.2 Immutable Collections 67

4.3 Mutable Collections 72

4.4 Common Interfaces 77

Snippet 4.1: calculating the standard deviation of an array using Scala Collection operations

The core of the Scala standard library is its collections: a common set of containers and data structures that
are shared by all Scala programs. Scala's collections make it easy for you to manipulate arrays, linked lists,
sets, maps and other data structures in convenient ways, providing built-in many of the data structures
needed for implementing a typical application.

This chapter will walk through the common operations that apply to all collection types, before discussing
the individual data structures and when you might use each of them in practice.

@ def stdDev(a: Array[Double]): Double = {

 val mean = a.sum / a.length

 val squareErrors = a.map(x => x - mean).map(x => x * x)

 math.sqrt(squareErrors.sum / a.length)

 } </> 4.1.scala

59

https://localhost/section-header/4%20Scala%20Collections
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.1.scala

4.1 Operations
Scala collections provide many common operations for constructing them, querying them, or transforming
them. These operations are present on the Arrays we saw in Chapter 3: Basic Scala, but they also apply to
all the collections we will cover in this chapter: Vectors (4.2.1), Sets (4.2.3), Maps (4.2.4), etc.

4.1.1 Builders

Builders let you efficiently construct a collection of unknown length, "freezing" it into the collection you
want at the end. This is most useful for constructing Arrays or immutable collections where you cannot
add or remove elements once the collection has been constructed.

4.1.2 Factory Methods

Factory methods provide another way to instantiate collections: with every element the same, with each
element constructed depending on the index, or from multiple smaller collections. This can be more
convenient than using Builders (4.1.1) in many common use cases.

@ val b = Array.newBuilder[Int]

b: mutable.ArrayBuilder[Int] = ArrayBuilder.ofInt

@ b += 1

@ b += 2

@ b.result()

res3: Array[Int] = Array(1, 2) </> 4.2.scala

@ Array.fill(5)("hello") // Array with "hello" repeated 5 times

res4: Array[String] = Array("hello", "hello", "hello", "hello", "hello")

@ Array.tabulate(5)(n => s"hello $n") // Array with 5 items, each computed from its index

res5: Array[String] = Array("hello 0", "hello 1", "hello 2", "hello 3", "hello 4")

@ Array(1, 2, 3) ++ Array(4, 5, 6) // Concatenating two Arrays into a larger one

res6: Array[Int] = Array(1, 2, 3, 4, 5, 6) </> 4.3.scala

See example 4.1 - BuildersFactories

Chapter 4 Scala Collections 60

https://localhost/section-header/4.1%20Operations
https://localhost/section-header/4.1.1%20Builders
https://localhost/section-header/4.1.2%20Factory%20Methods
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.2.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.3.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.1%20-%20BuildersFactories

4.1.3 Transforms

Transforms take an existing collection and create a new collection modified in some way. Note that these
transformations create copies of the collection, and leave the original unchanged. That means if you are still
using the original array, its contents will not be modified by the transform:

The copying involved in these collection transformations does have some overhead, but in most cases that
should not cause issues. If a piece of code does turn out to be a bottleneck that is slowing down your
program, you can always convert your .map/.filter/etc. transformation code into mutating operations
over raw Arrays or In-Place Operations (4.3.4) over Mutable Collections (4.3) to optimize for performance.

@ Array(1, 2, 3, 4, 5).map(i => i * 2) // Multiply every element by 2

res7: Array[Int] = Array(2, 4, 6, 8, 10)

@ Array(1, 2, 3, 4, 5).filter(i => i % 2 == 1) // Keep only elements not divisible by 2

res8: Array[Int] = Array(1, 3, 5)

@ Array(1, 2, 3, 4, 5).take(2) // Keep first two elements

res9: Array[Int] = Array(1, 2)

@ Array(1, 2, 3, 4, 5).drop(2) // Discard first two elements

res10: Array[Int] = Array(3, 4, 5)

@ Array(1, 2, 3, 4, 5).slice(1, 4) // Keep elements from index 1-4

res11: Array[Int] = Array(2, 3, 4)

@ Array(1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8).distinct // Removes all duplicates

res12: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8) </> 4.4.scala

@ val a = Array(1, 2, 3, 4, 5)

a: Array[Int] = Array(1, 2, 3, 4, 5)

@ val a2 = a.map(x => x + 10)

a2: Array[Int] = Array(11, 12, 13, 14, 15)

@ a(0) // Note that `a` is unchanged!

res15: Int = 1

@ a2(0)

res16: Int = 11 </> 4.5.scala

See example 4.2 - Transforms

Chapter 4 Scala Collections 61

https://localhost/section-header/4.1.3%20Transforms
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.4.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.5.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.2%20-%20Transforms

4.1.4 Queries

Queries let you search for elements without your collection, returning either a Boolean indicating if a
matching element exists, or an Option containing the element that was found. This can make it convenient
to find things inside your collections without the verbosity of writing for-loops to inspect the elements one
by one.

4.1.5 Aggregations
4.1.5.1 mkString

Stringifies the elements in a collection and combines them into one long string, with the given separator.
Optionally can take a start and end delimiter:

4.1.5.2 foldLeft

Takes a starting value and a function that it uses to combine each element of your collection with the
starting value, to produce a final result:

@ Array(1, 2, 3, 4, 5, 6, 7).find(i => i % 2 == 0 && i > 4)

res17: Option[Int] = Some(6)

@ Array(1, 2, 3, 4, 5, 6, 7).find(i => i % 2 == 0 && i > 10)

res18: Option[Int] = None

@ Array(1, 2, 3, 4, 5, 6, 7).exists(x => x > 1) // are any elements greater than 1?

res19: Boolean = true

@ Array(1, 2, 3, 4, 5, 6, 7).exists(_ < 0) // same as a.exists(x => x < 0)

res20: Boolean = false </> 4.6.scala

@ Array(1, 2, 3, 4, 5, 6, 7).mkString(",")

res21: String = "1,2,3,4,5,6,7"

@ Array(1, 2, 3, 4, 5, 6, 7).mkString("[", ",", "]")

res22: String = "[1,2,3,4,5,6,7]" </> 4.7.scala

@ Array(1, 2, 3, 4, 5, 6, 7).foldLeft(0)((x, y) => x + y) // sum of all elements

res23: Int = 28

@ Array(1, 2, 3, 4, 5, 6, 7).foldLeft(1)((x, y) => x * y) // product of all elements

res24: Int = 5040

@ Array(1, 2, 3, 4, 5, 6, 7).foldLeft(1)(_ * _) // same as above, shorthand syntax

res25: Int = 5040 </> 4.8.scala

Chapter 4 Scala Collections 62

https://localhost/section-header/4.1.4%20Queries
https://localhost/section-header/4.1.5%20Aggregations
https://localhost/section-header/4.1.5.1%20mkString
https://localhost/section-header/4.1.5.2%20foldLeft
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.6.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.7.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.8.scala

In general, foldLeft is similar to a for-loop and accumulator var, and the above sum-of-all-elements
foldLeft call can equivalently be written as:

4.1.5.3 groupBy

Groups your collection into a Map of smaller collections depending on a key:

4.1.6 Combining Operations
It is common to chain more than one operation together to achieve what you want. For example, here is a
function that computes the standard deviation of an array of numbers:

@ {

 var total = 0

 for (i <- Array(1, 2, 3, 4, 5, 6, 7)) total += i

 total

 }

total: Int = 28 </> 4.9.scala

@ val grouped = Array(1, 2, 3, 4, 5, 6, 7).groupBy(_ % 2)

grouped: Map[Int, Array[Int]] = Map(0 -> Array(2, 4, 6), 1 -> Array(1, 3, 5, 7))

@ grouped(0)

res26: Array[Int] = Array(2, 4, 6)

@ grouped(1)

res27: Array[Int] = Array(1, 3, 5, 7) </> 4.10.scala

See example 4.3 - QueriesAggregations

@ def stdDev(a: Array[Double]): Double = {

 val mean = a.foldLeft(0.0)(_ + _) / a.length

 val squareErrors = a.map(_ - mean).map(x => x * x)

 math.sqrt(squareErrors.foldLeft(0.0)(_ + _) / a.length)

 }

@ stdDev(Array(1, 2, 3, 4, 5))

res29: Double = 1.4142135623730951

@ stdDev(Array(3, 3, 3))

res30: Double = 0.0 </> 4.11.scala

Chapter 4 Scala Collections 63

https://localhost/section-header/4.1.5.3%20groupBy
https://localhost/section-header/4.1.6%20Combining%20Operations
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.9.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.10.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.3%20-%20QueriesAggregations
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.11.scala

Scala collections provide a convenient helper method .sum that is equivalent to .foldLeft(0.0)(_ + _), so
the above code can be simplified to:

As another example, here is a function that uses .exists, .map and .distinct to check if an incoming grid
of numbers is a valid Sudoku grid:

This implementation receives a Sudoku grid, represented as a 2-dimensional Array[Array[Int]]. For each
i from 0 to 9, we pick out a single row, column, and 3x3 square. It then checks that each such
row/column/square has 9 unique numbers by calling .distinct to remove any duplicates, and then
checking if the .length has changed as a result of that removal.

We can test this on some example grids to verify that it works:

@ def stdDev(a: Array[Double]): Double = {

 val mean = a.sum / a.length

 val squareErrors = a.map(_ - mean).map(x => x * x)

 math.sqrt(squareErrors.sum / a.length)

 } </> 4.12.scala

@ def isValidSudoku(grid: Array[Array[Int]]): Boolean = {

 !Range(0, 9).exists{i =>

 val row = Range(0, 9).map(grid(i)(_))

 val col = Range(0, 9).map(grid(_)(i))

 val square = Range(0, 9).map(j => grid((i % 3) * 3 + j % 3)((i / 3) * 3 + j / 3))

 row.distinct.length != row.length ||

 col.distinct.length != col.length ||

 square.distinct.length != square.length

 }

 } </> 4.13.scala

Chapter 4 Scala Collections 64

https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.12.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.13.scala

Chaining collection transformations in this manner will always have some overhead, but for most use cases
the overhead is worth the convenience and simplicity that these transforms give you. If collection
transforms do become a bottleneck, you can optimize the code using Views (4.1.8), In-Place Operations
(4.3.4), or finally by looping over the raw Arrays yourself.

4.1.7 Converters
You can convert among Arrays and other collections like Vector (4.2.1)s and Set (4.2.3) using the .to
method:

@ isValidSudoku(Array(

 Array(5, 3, 4, 6, 7, 8, 9, 1, 2),

 Array(6, 7, 2, 1, 9, 5, 3, 4, 8),

 Array(1, 9, 8, 3, 4, 2, 5, 6, 7),

 Array(8, 5, 9, 7, 6, 1, 4, 2, 3),

 Array(4, 2, 6, 8, 5, 3, 7, 9, 1),

 Array(7, 1, 3, 9, 2, 4, 8, 5, 6),

 Array(9, 6, 1, 5, 3, 7, 2, 8, 4),

 Array(2, 8, 7, 4, 1, 9, 6, 3, 5),

 Array(3, 4, 5, 2, 8, 6, 1, 7, 9)

))

res33: Boolean = true </> 4.14.scala

@ isValidSudoku(Array(

 Array(5, 3, 4, 6, 7, 8, 9, 1, 2),

 Array(6, 7, 2, 1, 9, 5, 3, 4, 8),

 Array(1, 9, 8, 3, 4, 2, 5, 6, 7),

 Array(8, 5, 9, 7, 6, 1, 4, 2, 3),

 Array(4, 2, 6, 8, 5, 3, 7, 9, 1),

 Array(7, 1, 3, 9, 2, 4, 8, 5, 6),

 Array(9, 6, 1, 5, 3, 7, 2, 8, 4),

 Array(2, 8, 7, 4, 1, 9, 6, 3, 5),

 Array(3, 4, 5, 2, 8, 6, 1, 7, 8)

)) // bottom right cell should be 9

res34: Boolean = false </> 4.15.scala

See example 4.4 - Combining

@ Array(1, 2, 3).to(Vector)

res35: Vector[Int] = Vector(1, 2, 3)

@ Vector(1, 2, 3).to(Array)

res36: Array[Int] = Array(1, 2, 3)

@ Array(1, 1, 2, 2, 3, 4).to(Set)

res37: Set[Int] = Set(1, 2, 3, 4) </> 4.16.scala

Chapter 4 Scala Collections 65

https://localhost/section-header/4.1.7%20Converters
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.14.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.15.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.4%20-%20Combining
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.16.scala

4.1.8 Views
When you chain multiple transformations on a collection, we are creating many intermediate collections
that are immediately thrown away. For example, in the following snippet:

The chain of .map .filter .slice operations ends up traversing the collection three times, creating three
new collections, but only the last collection ends up being stored in myNewArray and the others are
discarded.

1 2 3 4 5 6 7 8 9
myArray

2 3 4 5 6 7 8 9 10

map(x => x + 1)

2 4 6 8 10

filter(x => x % 2 == 0)

4 6
myNewArray

slice(1, 3)

This creation and traversal of intermediate collections is wasteful. In cases where you have long chains of
collection transformations that are becoming a performance bottleneck, you can use the .view method
together with .to to "fuse" the operations together:

Using .view before the map/filter/slice transformation operations defers the actual traversal and
creation of a new collection until later, when we call .to to convert it back into a concrete collection type:

1 2 3 4 5 6 7 8 9
myArray

4 6
myNewArray

view map filter slice to

This allows us to perform this chain of map/filter/slice transformations with only a single traversal, and
only creating a single output collection. This reduces the amount of unnecessary processing and memory
allocations.

@ val myArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

@ val myNewArray = myArray.map(x => x + 1).filter(x => x % 2 == 0).slice(1, 3)

myNewArray: Array[Int] = Array(4, 6) </> 4.17.scala

@ val myNewArray = myArray.view.map(_ + 1).filter(_ % 2 == 0).slice(1, 3).to(Array)

myNewArray: Array[Int] = Array(4, 6) </> 4.18.scala

Chapter 4 Scala Collections 66

https://localhost/section-header/4.1.8%20Views
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.17.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.18.scala

4.2 Immutable Collections
While Arrays are the low-level primitive, most Scala applications are built upon its mutable and immutable
collections: Vectors, Lists, Sets, and Maps. Of these, immutable collections are by far the most common.

Immutable collections rule out an entire class of bugs due to unexpected modifications, and are especially
useful in multi-threaded scenarios where you can safely pass immutable collections between threads
without worrying about thread-safety issues. Most immutable collections use Structural Sharing (4.2.2) to
make creating updated copies cheap, allowing you to use them in all but the most performance critical
code.

4.2.1 Immutable Vectors
Vectors are fixed-size, immutable linear sequences. They are a good general-purpose sequence data
structure, and provide efficient O(log n) performance for most operations.

Unlike Arrays where a(...) = ... mutates it in place, a Vector's .updated method returns a new Vector
with the modification while leaving the old Vector unchanged. Due to Structural Sharing (4.2.2), this is a
reasonably-efficient O(log n) operation. Similarly, using :+ and +: to create a new Vector with additional
elements on either side, or using .tail to create a new Vector with one element removed, are all O(log n)
as well:

Vectors support the same set of Operations (4.1) that Arrays and other collections do: builders (4.1.1),
factory methods (4.1.2), transforms (4.1.3), etc.

See example 4.5 - ConvertersViews

@ val v = Vector(1, 2, 3, 4, 5)

v: Vector[Int] = Vector(1, 2, 3, 4, 5)

@ v(0)

res42: Int = 1

@ val v2 = v.updated(2, 10)

v2: Vector[Int] = Vector(1, 2, 10, 4, 5)

@ v2

res44: Vector[Int] = Vector(1, 2, 10, 4, 5)

@ v // note that `v` did not change!

res45: Vector[Int] = Vector(1, 2, 3, 4, 5)
</> 4.19.scala

@ val v = Vector[Int]()

v: Vector[Int] = Vector()

@ val v1 = v :+ 1

v1: Vector[Int] = Vector(1)

@ val v2 = 4 +: v1

v2: Vector[Int] = Vector(4, 1)

@ val v3 = v2.tail

v3: Vector[Int] = Vector(1)

</> 4.20.scala

Chapter 4 Scala Collections 67

https://localhost/section-header/4.2%20Immutable%20Collections
https://localhost/section-header/4.2.1%20Immutable%20Vectors
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.5%20-%20ConvertersViews
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.19.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.20.scala

In general, using Vectors is handy when you have a sequence you know will not change, but need flexibility
in how you work with it. Their tree structure makes most operations reasonably efficient, although they will
never be quite as fast as Arrays for in-place updates or Immutable Lists (4.2.5) for adding and removing
elements at the front.

4.2.2 Structural Sharing
Vectors implement their O(log n) copy-and-update operations by re-using portions of their tree structure.
This avoids copying the whole tree, resulting in a "new" Vector that shares much of the old tree structure
with only minor modifications.

Consider a large Vector, v1:

This is represented in-memory as a tree structure, whose breadth and depth depend on the size of the
Vector:

v1

1 2 0 9 3 2 5 5 4 8 4 6

7 2 9 6

This example is somewhat simplified - a Vector in Scala has 32 elements per tree node rather than the 4
shown above - but it will serve us well enough to illustrate how the Vector data structure works.

Let us consider what happens if we want to perform an update, e.g. replacing the fifth value 7 in the above
Vector with the value 8:

This is done by making updated copies of the nodes in the tree that are in the direct path down to the value
we wish to update, but re-using all other nodes unchanged:

@ val v1 = Vector(1, 2, 0, 9, 7, 2, 9, 6, ..., 3, 2, 5, 5, 4, 8, 4, 6)

@ val v2 = v1.updated(4, 8)

@ v2

res50: Vector[Int] = Vector(1, 2, 0, 9, 8, 2, 9, 6, ..., 3, 2, 5, 5, 4, 8, 4, 6)
</> 4.21.scala

Chapter 4 Scala Collections 68

https://localhost/section-header/4.2.2%20Structural%20Sharing
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.21.scala

v1

1 2 0 9 3 2 5 5 4 8 4 6

v2

7 2 9 68 2 9 6

In this example Vector with 9 nodes, only 3 of the nodes end up needing to be copied. In a large Vector,
the number of nodes that need to be copied is proportional to the height of the tree, while other nodes can
be re-used: this structural sharing is what allows updated copies of the Vector to be created in only O(log
n) time. This is much less than the O(n) time it takes to make a full copy of a mutable Array or other data
structure.

Nevertheless, updating a Vector does always involve a certain amount of copying, and will never be as fast
as updating mutable data structures in-place. In some cases where performance is important and you are
updating a collection very frequently, you might consider using a mutable ArrayDeque (4.3.1) which has
faster O(1) update/append/prepend operations, or raw Arrays if you know the size of your collection in
advance.

A similar tree-shaped data structure is also used to implement Immutable Sets (4.2.3) and Immutable Maps
(4.2.4).

4.2.3 Immutable Sets
Scala's immutable Sets are unordered collections of elements without duplicates, and provide an efficient
O(log n) .contains method. Sets can be constructed via + and elements removed by -, or combined via
++. Note that duplicates elements are discarded:

See example 4.6 - ImmutableVectors

@ val s = Set(1, 2, 3)

s: Set[Int] = Set(1, 2, 3)

@ s.contains(2)

res51: Boolean = true

@ s.contains(4)

res52: Boolean = false
</> 4.22.scala

@ Set(1, 2, 3) + 4 + 5

res53: Set[Int] = HashSet(5, 1, 2, 3, 4)

@ Set(1, 2, 3) - 2

res54: Set[Int] = Set(1, 3)

@ Set(1, 2, 3) ++ Set(2, 3, 4)

res55: Set[Int] = Set(1, 2, 3, 4)
</> 4.23.scala

Chapter 4 Scala Collections 69

https://localhost/section-header/4.2.3%20Immutable%20Sets
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.6%20-%20ImmutableVectors
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.22.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.23.scala

The uniqueness of items within a Set is also sometimes useful when you want to ensure that a collection
does not contain any duplicates.

You can iterate over Sets using for-loops, but the order of items is undefined and should not be relied
upon:

Most immutable Set operations take time O(log n) in the size of the Set. This is fast enough for most
purposes, but in cases where it isn't you can always fall back to Mutable Sets (4.3.2) for better performance.
Sets also support the standard set of operations common to all collections.

4.2.4 Immutable Maps
Immutable maps are unordered collections of keys and values, allowing efficient lookup by key:

You can also use .get if you're not sure whether a map contains a key or not. This returns Some(v) if the
key is present, None if not:

While Maps support the same set of operations as other collections, they are treated as collections of tuples
representing each key-value pair. Conversions via .to requires a collection of tuples to convert from, + adds
tuples to the Map as key-value pairs, and for loops iterate over tuples:

@ for (i <- Set(1, 2, 3, 4, 5)) println(i)

5

1

2

3

4 </> 4.24.scala

See example 4.7 - ImmutableSets

@ val m = Map("one" -> 1, "two" -> 2, "three" -> 3)

m: Map[String, Int] = Map("one" -> 1, "two" -> 2, "three" -> 3)

@ m.contains("two")

res58: Boolean = true

@ m("two")

res59: Int = 2 </> 4.25.scala

@ m.get("one")

res60: Option[Int] = Some(1)

@ m.get("four")

res61: Option[Int] = None </> 4.26.scala

Chapter 4 Scala Collections 70

https://localhost/section-header/4.2.4%20Immutable%20Maps
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.24.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.7%20-%20ImmutableSets
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.25.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.26.scala

Like Sets, the order of items when iterating over a Map is undefined and should not be relied upon, and
most immutable Map operations take time O(log n) in the size of the Map.

4.2.5 Immutable Lists

Scala's immutable Lists are a singly-linked list data structure. Each node in the list has a value and pointer
to the next node, terminating in a Nil node. Lists have a fast O(1) .head method to look up the first item
in the list, a fast O(1) .tail method to create a list without the first element, and a fast O(1) :: operator to
create a new List with one more element in front.

.tail and :: are efficient because they can share much of the existing List: .tail returns a reference to
the next node in the singly linked structure, while :: adds a new node in front. The fact that multiple lists
can share nodes means that in the above example, myList, myTail, myOtherList and myThirdList are
actually mostly the same data structure:

@ Vector(("one", 1), ("two", 2), ("three", 3)).to(Map)

res62: Map[String, Int] = Map("one" -> 1, "two" -> 2, "three" -> 3)

@ Map[String, Int]() + ("one" -> 1) + ("three" -> 3)

res63: Map[String, Int] = Map("one" -> 1, "three" -> 3)

@ for ((k, v) <- m) println(k + " " + v)

one 1

two 2

three 3 </> 4.27.scala

See example 4.8 - ImmutableMaps

@ val myList = List(1, 2, 3, 4, 5)

myList: List[Int] = List(1, 2, 3, 4, 5)

@ myList.head

res66: Int = 1

@ val myTail = myList.tail

myTail: List[Int] = List(2, 3, 4, 5)

@ val myOtherList = 0 :: myList

myOtherList: List[Int] = List(0, 1, 2, 3, 4, 5)

@ val myThirdList = -1 :: myList

myThirdList: List[Int] = List(-1, 1, 2, 3, 4, 5) </> 4.28.scala

Chapter 4 Scala Collections 71

https://localhost/section-header/4.2.5%20Immutable%20Lists
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.27.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.8%20-%20ImmutableMaps
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.28.scala

myList

1myOtherList 0

myThirdList -1 myTail
2 3 4 5 Nil

This can result in significant memory savings if you have a large number of collections that have identical
elements on one side, e.g. paths on a filesystem which all share the same prefix. Rather than creating an
updated copy of an Array in O(n) time, or an updated copy of a Vector in O(log n) time, pre-pending an
item to a List is a fast O(1) operation.

The downside of Lists is that indexed lookup via myList(i) is a slow O(n) operation, since you need to
traverse the list starting from the left to find the element you want. Appending/removing elements on the
right hand side of the list is also a slow O(n), since it needs to make a copy of the entire list. For use cases
where you want fast indexed lookup or fast appends/removes on the right, you should consider using
Vectors (4.2.1) or mutable ArrayDeques (4.3.1) instead.

4.3 Mutable Collections
Mutable collections are in general faster than their immutable counterparts when used for in-place
operations. However, mutability comes at a cost: you need to be much more careful sharing them between
different parts of your program. It is easy to create bugs where a shared mutable collection is updated
unexpectedly, forcing you to hunt down which line in a large codebase is performing the unwanted update.

A common approach is to use mutable collections locally within a function or private to a class where there
is a performance bottleneck, but to use immutable collections elsewhere where speed is less of a concern.
That gives you the high performance of mutable collections where it matters most, while not sacrificing the
safety that immutable collections give you throughout the bulk of your application logic.

See example 4.9 - ImmutableLists

Chapter 4 Scala Collections 72

https://localhost/section-header/4.3%20Mutable%20Collections
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.9%20-%20ImmutableLists

4.3.1 Mutable ArrayDeques
ArrayDeques are general-purpose mutable, linear collections that provide efficient O(1) indexed lookups,
O(1) indexed updates, and O(1) insertion and removal at both left and right ends:

ArrayDeques are implemented as a circular buffer, with pointers to the logical start and end of the
collection within the buffer. The operations above can be visualized as follows, from left to right:

myArrayDeque removeHead() append(6) removeHead()

start

1 2 3 4 5

end start

2 3 4 5

end start

6 2 3 4 5

end start

6 3 4 5

end

An ArrayDeque tries to re-use the same underlying Array as much as possible, only moving the start and
end pointers around as elements get added or removed from either end. Only if the total number of
elements grows beyond the current capacity does the underlying Array get re-allocated, and the size is
increased by a fix multiple to keep the amortized cost of this re-allocation small.

As a result, operations on an ArrayDeque are much faster than the equivalent operations on an immutable
Vector, which has to allocate O(log n) new tree nodes for every operation you perform.

ArrayDeques have the standard suite of Operations (4.1). They can serve many roles:

An Array that can grow: an Array.newBuilder does not allow indexed lookup or modification while
the array is being built, and an Array does not allow adding more elements. An ArrayDeque allows
both

@ val myArrayDeque = collection.mutable.ArrayDeque(1, 2, 3, 4, 5)

myArrayDeque: collection.mutable.ArrayDeque[Int] = ArrayDeque(1, 2, 3, 4, 5)

@ myArrayDeque.removeHead()

res71: Int = 1

@ myArrayDeque.append(6)

res72: collection.mutable.ArrayDeque[Int] = ArrayDeque(2, 3, 4, 5, 6)

@ myArrayDeque.removeHead()

res73: Int = 2

@ myArrayDeque

res74: collection.mutable.ArrayDeque[Int] = ArrayDeque(3, 4, 5, 6) </> 4.29.scala

Chapter 4 Scala Collections 73

https://localhost/section-header/4.3.1%20Mutable%20ArrayDeques
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.29.scala

A faster, mutable alternative to immutable Vectors, if you find adding/removing items from either
end using :+/+: or .tail/.init is a bottleneck in your code. Appending and prepending to
ArrayDeques is much faster than the equivalent Vector operations

A first-in-first-out Queue, by inserting items to the right via .append, and removing items via
.removeHead

A first-in-last-out Stack, by inserting items to the right via .append, and removing items via
.removeLast

If you want to "freeze" a mutable ArrayDeque into an immutable Vector, you can use .to(Vector):

Note that this makes a copy of the entire collection.

ArrayDeques implement the abstract collection.mutable.Buffer interface, and can also be constructed
via the collection.mutable.Buffer(...) syntax.

4.3.2 Mutable Sets
The Scala standard library provides mutable Sets as a counterpart to the immutable Sets we saw earlier.
Mutable sets also provide efficient .contains checks (O(1)), but instead of constructing new copies of the
Set via + and -, you instead add and remove elements from the Set via .add and .remove:

You can "freeze" a mutable Set into an immutable Set by using .to(Set), which makes a copy you cannot
mutate using .add or .remove, and convert it back to a mutable Set the same way. Note that each such
conversion makes a copy of the entire set.

@ myArrayDeque.to(Vector)

res75: Vector[Int] = Vector(3, 4, 5, 6) </> 4.30.scala

See example 4.10 - MutableArrayDeques

@ val s = collection.mutable.Set(1, 2, 3)

s: mutable.Set[Int] = HashSet(1, 2, 3)

@ s.contains(2)

res77: Boolean = true

@ s.contains(4)

res78: Boolean = false </> 4.31.scala

@ s.add(4)

@ s.remove(1)

@ s

res81: mutable.Set[Int] = HashSet(2, 3, 4)

</> 4.32.scala

See example 4.11 - MutableSets

Chapter 4 Scala Collections 74

https://localhost/section-header/4.3.2%20Mutable%20Sets
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.30.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.10%20-%20MutableArrayDeques
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.31.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.32.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.11%20-%20MutableSets

4.3.3 Mutable Maps
Mutable Maps are again just like immutable Maps, but allow you to mutate the Map by adding or removing
key-value pairs:

Mutable Maps have a convenient getOrElseUpdate function, that allows you to look up a value by key, and
compute/store the value if there isn't one already present:

.getOrElseUpdate makes it convenient to use a mutable Map as a cache: the second parameter to

.getOrElseUpdate is a lazy "by-name" parameter, and is only evaluated when the key is not found in the
Map. This provides the common "check if key present, if so return value, otherwise insert new value and
return that" workflow built in. We will go into more detail how by-name parameters work in Chapter 5:
Notable Scala Features.

@ val m = collection.mutable.Map("one" -> 1, "two" -> 2, "three" -> 3)

m: mutable.Map[String, Int] = HashMap("two" -> 2, "three" -> 3, "one" -> 1)

@ m.remove("two")

res83: Option[Int] = Some(2)

@ m("five") = 5

@ m

res85: mutable.Map[String, Int] = HashMap("five" -> 5, "three" -> 3, "one" -> 1)
</> 4.33.scala

@ val m = collection.mutable.Map("one" -> 1, "two" -> 2, "three" -> 3)

@ m.getOrElseUpdate("three", -1) // already present, returns existing value

res87: Int = 3

@ m // `m` is unchanged

res88: mutable.Map[String, Int] = HashMap("two" -> 2, "three" -> 3, "one" -> 1)

@ m.getOrElseUpdate("four", -1) // not present, stores new value in map and returns it

res89: Int = -1

@ m // `m` now contains "four" -> -1

res90: mutable.Map[String, Int] = HashMap(

 "two" -> 2,

 "three" -> 3,

 "four" -> -1,

 "one" -> 1

) </> 4.34.scala

Chapter 4 Scala Collections 75

https://localhost/section-header/4.3.3%20Mutable%20Maps
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.33.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.34.scala

Mutable Maps are implemented as hash-tables, with m(...) lookups and m(...) = ... updates being
efficient O(1) operations.

4.3.4 In-Place Operations
All mutable collections, including Arrays, have in-place versions of many common collection operations.
These allow you to perform the operation on the mutable collection without having to make a transformed
copy:

Apart from those shown above, there is also dropInPlace, sliceInPlace, sortInPlace, etc. Using in-
place operations rather than normal transformations avoids the cost of allocating new transformed
collections, and can help in performance-critical scenarios.

See example 4.12 - MutableMaps

@ val a = collection.mutable.ArrayDeque(1, 2, 3, 4)

a: mutable.ArrayDeque[Int] = ArrayDeque(1, 2, 3, 4)

@ a.mapInPlace(_ + 1)

res92: mutable.ArrayDeque[Int] = ArrayDeque(2, 3, 4, 5)

@ a.filterInPlace(_ % 2 == 0)

res93: mutable.ArrayDeque[Int] = ArrayDeque(2, 4)

@ a // `a` was modified in place

res94: mutable.ArrayDeque[Int] = ArrayDeque(2, 4) </> 4.35.scala

See example 4.13 - InPlaceOperations

Chapter 4 Scala Collections 76

https://localhost/section-header/4.3.4%20In-Place%20Operations
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.12%20-%20MutableMaps
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.35.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.13%20-%20InPlaceOperations

4.4 Common Interfaces
In many cases, a piece of code does not care exactly what collection it is working on. For example, code that
just needs something that can be iterated over in order can take a Seq[T]:

Code that needs something which provides efficient indexed lookup doesn't care if it's an Array or Vector,
but cannot work with a List. In that case, your code can take an IndexedSeq[T]:

The hierarchy of data types we have seen so far is as follows:

@ def iterateOverSomething[T](items: Seq[T]) = {

 for (i <- items) println(i)

 }

@ iterateOverSomething(Vector(1, 2, 3))

1

2

3

@ iterateOverSomething(List(("one", 1), ("two", 2), ("three", 3)))

(one,1)

(two,2)

(three,3) </> 4.36.scala

@ def getIndexTwoAndFour[T](items: IndexedSeq[T]) = (items(2), items(4))

@ getIndexTwoAndFour(Vector(1, 2, 3, 4, 5))

res99: (Int, Int) = (3, 5)

@ getIndexTwoAndFour(Array(2, 4, 6, 8, 10))

res100: (Int, Int) = (6, 10) </> 4.37.scala

Chapter 4 Scala Collections 77

https://localhost/section-header/4.4%20Common%20Interfaces
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.36.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.37.scala

Iterable

collection.Set collection.Seq collection.Map

Set mutable.Set Seq mutable.IndexedSeq Map mutable.Map

List IndexedSeq mutable.Buffer Array

mutable.ArrayDequeVector

Depending on what you want your code to be able to accept, you can pick the relevant type in the
hierarchy: Iterable, IndexedSeq, Seq, collection.Seq, etc. In general, most code defaults to using
immutable Seqs, Sets and Maps. Mutable collections under the collection.mutable package are only
used where necessary, and it is best to keep them local within a function or private to a class. collection.
{Seq,Set,Map} serve as common interfaces to both mutable and immutable collections.

4.5 Conclusion
In this chapter, we have gone through the basic collections that underlie the Scala standard library: Array,
immutable Vector/Set/Map/List, and mutable ArrayDeque/Set/Map. We have seen how to construct
collections, query them, convert one to another, and write functions that work with multiple possible
collection types.

This chapter should have given you a foundation for competently working with Scala's collections library,
which is widely used throughout every Scala program. We will now go through some of the more unique
features of the Scala language, to round off your introduction to Scala.

See example 4.14 - CommonInterfaces

Chapter 4 Scala Collections 78

https://localhost/section-header/4.5%20Conclusion
https://github.com/handsonscala/handsonscala/tree/v1/examples/4.14%20-%20CommonInterfaces

Exercise: Modify the def isValidSudoku method we defined in this chapter to allow testing the
validity of partially-filled Sudoku grids, with un-filled cells marked by the value 0.

See example 4.15 - PartialValidSudoku

@ isValidSudoku(Array(

 Array(3, 1, 6, 5, 7, 8, 4, 9, 2),

 Array(5, 2, 9, 1, 3, 4, 7, 6, 8),

 Array(4, 8, 7, 6, 2, 9, 5, 3, 1),

 Array(2, 6, 3, 0, 1, 0, 0, 8, 0),

 Array(9, 7, 4, 8, 6, 3, 0, 0, 5),

 Array(8, 5, 1, 0, 9, 0, 6, 0, 0),

 Array(1, 3, 0, 0, 0, 0, 2, 5, 0),

 Array(0, 0, 0, 0, 0, 0, 0, 7, 4),

 Array(0, 0, 5, 2, 0, 6, 3, 0, 0)

))

res101: Boolean = true </> 4.38.scala

@ isValidSudoku(Array(

 Array(3, 1, 6, 5, 7, 8, 4, 9, 3),

 Array(5, 2, 9, 1, 3, 4, 7, 6, 8),

 Array(4, 8, 7, 6, 2, 9, 5, 3, 1),

 Array(2, 6, 3, 0, 1, 0, 0, 8, 0),

 Array(9, 7, 4, 8, 6, 3, 0, 0, 5),

 Array(8, 5, 1, 0, 9, 0, 6, 0, 0),

 Array(1, 3, 0, 0, 0, 0, 2, 5, 0),

 Array(0, 0, 0, 0, 0, 0, 0, 7, 4),

 Array(0, 0, 5, 2, 0, 6, 3, 0, 0)

)) // top right cell should be 2

res102: Boolean = false </> 4.39.scala

Chapter 4 Scala Collections 79

https://github.com/handsonscala/handsonscala/tree/v1/examples/4.15%20-%20PartialValidSudoku
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.38.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.39.scala

Exercise: Write a def renderSudoku method that can be used to pretty-print a Sudoku grid as shown
below: with the zeroes representing unfilled cells left out, and each 3x3 square surrounded by
horizontal and vertical lines.

You might find the Array.grouped operator useful for this, though you can also do without it:

See example 4.16 - RenderSudoku

@ renderSudoku(Array(

 Array(3, 1, 6, 5, 7, 8, 4, 9, 2),

 Array(5, 2, 9, 1, 3, 4, 7, 6, 8),

 Array(4, 8, 7, 6, 2, 9, 5, 3, 1),

 Array(2, 6, 3, 0, 1, 0, 0, 8, 0),

 Array(9, 7, 4, 8, 6, 3, 0, 0, 5),

 Array(8, 5, 1, 0, 9, 0, 6, 0, 0),

 Array(1, 3, 0, 0, 0, 0, 2, 5, 0),

 Array(0, 0, 0, 0, 0, 0, 0, 7, 4),

 Array(0, 0, 5, 2, 0, 6, 3, 0, 0)

))

</> 4.40.scala

res103: String = """

+-------+-------+-------+

| 3 1 6 | 5 7 8 | 4 9 2 |

| 5 2 9 | 1 3 4 | 7 6 8 |

| 4 8 7 | 6 2 9 | 5 3 1 |

+-------+-------+-------+

| 2 6 3 | 1 | 8 |

| 9 7 4 | 8 6 3 | 5 |

| 8 5 1 | 9 | 6 |

+-------+-------+-------+

| 1 3 | | 2 5 |

| | | 7 4 |

| 5 | 2 6 | 3 |

+-------+-------+-------+

""" </> 4.41.output-scala

@ Array(3, 1, 6, 5, 7, 8, 4, 9, 2).grouped(3).toArray

res104: Array[Array[Int]] = Array(Array(3, 1, 6), Array(5, 7, 8), Array(4, 9, 2))
</> 4.42.scala

Discuss Chapter 4 online at https://www.handsonscala.com/discuss/4

Chapter 4 Scala Collections 80

https://github.com/handsonscala/handsonscala/tree/v1/examples/4.16%20-%20RenderSudoku
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.40.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.41.output-scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/4.42.scala
https://www.handsonscala.com/discuss/4

5
Notable Scala Features

5.1 Case Classes and Sealed Traits 82

5.2 Pattern Matching 85

5.3 By-Name Parameters 90

5.4 Implicit Parameters 93

5.5 Typeclass Inference 96

Snippet 5.1: using Scala's pattern matching feature to parse simple string patterns

This chapter will cover some of the more interesting and unusual features of Scala. For each such feature,
we will cover both what the feature does as well as some common use cases to give you an intuition for
what it is useful for.

Not every feature in this chapter will be something you use day-to-day. Nevertheless, even these less-
commonly-used features are used often enough that it is valuable to have a high-level understanding for
when you eventually encounter them in the wild.

@ def getDayMonthYear(s: String) = s match {

 case s"$day-$month-$year" => println(s"found day: $day, month: $month, year: $year")

 case _ => println("not a date")

 }

@ getDayMonthYear("9-8-1965")

found day: 9, month: 8, year: 1965

@ getDayMonthYear("9-8")

not a date </> 5.1.scala

81

https://localhost/section-header/5%20Notable%20Scala%20Features
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.1.scala

5.1 Case Classes and Sealed Traits
5.1.1 Case Classes
case classes are like normal classes, but meant to represent classes which are "just data": where all the
data is immutable and public, without any mutable state or encapsulation. Their use case is similar to
"structs" in C/C++, "POJOs" in Java or "Data Classes" in Python or Kotlin. Their name comes from the fact
that they support pattern matching (5.2) via the case keyword.

Case classes are defined with the case keyword, and can be instantiated without new. All of their
constructor parameters are public fields by default.

case classs give you a few things for free:

A .toString implemented to show you the constructor parameter values

A == implemented to check if the constructor parameter values are equal

A .copy method to conveniently create modified copies of the case class instance

Like normal classes, you can define instance methods or properties in the body of the case class:

case classes are a good replacement for large tuples, since instead of extracting their values via ._1 ._2
._7 you can extract the values via their names like .x and .y. That is much easier than trying to remember
exactly what field ._7 in a large tuple represents!

@ case class Point(x: Int, y: Int)

@ val p = Point(1, 2)

p: Point = Point(1, 2)

</> 5.2.scala

@ p.x

res2: Int = 1

@ p.y

res3: Int = 2 </> 5.3.scala

@ p.toString

res4: String = "Point(1,2)"

@ val p2 = Point(1, 2)

@ p == p2

res6: Boolean = true </> 5.4.scala

@ val p = Point(1, 2)

@ val p3 = p.copy(y = 10)

p3: Point = Point(1, 10)

@ val p4 = p3.copy(x = 20)

p4: Point = Point(20, 10) </> 5.5.scala

@ case class Point(x: Int, y: Int) {

 def z = x + y

 }

</> 5.6.scala

@ val p = Point(1, 2)

@ p.z

res12: Int = 3 </> 5.7.scala

Chapter 5 Notable Scala Features 82

https://localhost/section-header/5.1%20Case%20Classes%20and%20Sealed%20Traits
https://localhost/section-header/5.1.1%20Case%20Classes
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.2.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.3.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.4.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.5.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.6.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.7.scala

5.1.2 Sealed Traits
traits can also be defined sealed, and only extended by a fixed set of case classes. In the following
example, we define a sealed trait Point extended by two case classes: Point2D and Point3D:

The core difference between normal traits and sealed traits can be summarized as follows:

Normal traits are open, so any number of classes can inherit from the trait as long as they provide all
the required methods, and instances of those classes can be used interchangeably via the trait's
required methods.

sealed traits are closed: they only allow a fixed set of classes to inherit from them, and all inheriting
classes must be defined together with the trait itself in the same file or REPL command (hence the
curlies {} surrounding the Point/Point2D/Point3D definitions above).

Because there are only a fixed number of classes inheriting from sealed trait Point, we can use pattern
matching in the def hypotenuse function above to define how each kind of Point should be handled.

5.1.3 Use Cases for Normal v.s. Sealed Traits
Both normal traits and sealed traits are common in Scala applications: normal traits for interfaces
which may have any number of subclasses, and sealed traits where the number of subclasses is fixed.

Normal traits and sealed traits make different things easy:

See example 5.1 - CaseClass

@ {

 sealed trait Point

 case class Point2D(x: Double, y: Double) extends Point

 case class Point3D(x: Double, y: Double, z: Double) extends Point

 }

@ def hypotenuse(p: Point) = p match {

 case Point2D(x, y) => math.sqrt(x * x + y * y)

 case Point3D(x, y, z) => math.sqrt(x * x + y * y + z * z)

 }

@ val points: Array[Point] = Array(Point2D(1, 2), Point3D(4, 5, 6))

@ for (p <- points) println(hypotenuse(p))

2.23606797749979

8.774964387392123 </> 5.8.scala

Chapter 5 Notable Scala Features 83

https://localhost/section-header/5.1.2%20Sealed%20Traits
https://localhost/section-header/5.1.3%20Use%20Cases%20for%20Normal%20v.s.%20Sealed%20Traits
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.1%20-%20CaseClass
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.8.scala

A normal trait hierarchy makes it easy to add additional sub-classes: just define your class and
implement the necessary methods. However, it makes it difficult to add new methods: a new method
needs to be added to all existing subclasses, of which there may be many.

A sealed trait hierarchy is the opposite: it is easy to add new methods, since a new method can
simply pattern match on each sub-class and decide what it wants to do for each. However, adding
new sub-classes is difficult, as you need to go to all existing pattern matches and add the case to
handle your new sub-class

In general, sealed traits are good for modelling hierarchies where you expect the number of sub-classes to
change very little or not-at-all. A good example of something that can be modeled using sealed trait is
JSON:

A JSON value can only be JSON null, boolean, number, string, array, or dictionary.

JSON has not changed in 20 years, so it is unlikely that anyone will need to extend our JSON trait
with additional subclasses.

While the set of sub-classes is fixed, the range of operations we may want to do on a JSON blob is
unbounded: parse it, serialize it, pretty-print it, minify it, sanitize it, etc.

Thus it makes sense to model a JSON data structure as a closed sealed trait hierarchy rather than a normal
open trait hierarchy.

@ {

 sealed trait Json

 case class Null() extends Json

 case class Bool(value: Boolean) extends Json

 case class Str(value: String) extends Json

 case class Num(value: Double) extends Json

 case class Arr(value: Seq[Json]) extends Json

 case class Dict(value: Map[String, Json]) extends Json

 } </> 5.9.scala

See example 5.2 - SealedTrait

Chapter 5 Notable Scala Features 84

https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.9.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.2%20-%20SealedTrait

5.2 Pattern Matching
5.2.1 Match
Scala allows pattern matching on values using the match keyword. This is similar to the switch statement
found in other programming languages, but more flexible: apart from matching on primitive integers and
strings, you can also use match to extract values from ("destructure") composite data types like tuples and
case classes. Note that in many examples below, there is a case _ => clause which defines the default case
if none of the earlier cases matched.

5.2.1.1 Matching on Ints

@ def dayOfWeek(x: Int) = x match {

 case 1 => "Mon"; case 2 => "Tue"

 case 3 => "Wed"; case 4 => "Thu"

 case 5 => "Fri"; case 6 => "Sat"

 case 7 => "Sun"; case _ => "Unknown"

 }

@ dayOfWeek(5)

res19: String = "Fri"

@ dayOfWeek(-1)

res20: String = "Unknown" </> 5.10.scala

5.2.1.2 Matching on Strings

@ def indexOfDay(d: String) = d match {

 case "Mon" => 1; case "Tue" => 2

 case "Wed" => 3; case "Thu" => 4

 case "Fri" => 5; case "Sat" => 6

 case "Sun" => 7; case _ => -1

 }

@ indexOfDay("Fri")

res22: Int = 5

@ indexOfDay("???")

res23: Int = -1 </> 5.11.scala

5.2.1.3 Matching on tuple (Int, Int)

@ for (i <- Range.inclusive(1, 100)) {

 val s = (i % 3, i % 5) match {

 case (0, 0) => "FizzBuzz"

 case (0, _) => "Fizz"

 case (_, 0) => "Buzz"

 case _ => i

 }

 println(s)

 }

1

2

Fizz

4

Buzz

... </> 5.12.scala

5.2.1.4 Matching on tuple (Boolean, Boolean)

@ for (i <- Range.inclusive(1, 100)) {

 val s = (i % 3 == 0, i % 5 == 0) match {

 case (true, true) => "FizzBuzz"

 case (true, false) => "Fizz"

 case (false, true) => "Buzz"

 case (false, false) => i

 }

 println(s)

 }

1

2

Fizz

4

Buzz

... </> 5.13.scala

Chapter 5 Notable Scala Features 85

https://localhost/section-header/5.2%20Pattern%20Matching
https://localhost/section-header/5.2.1%20Match
https://localhost/section-header/5.2.1.1%20Matching%20on%20
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.10.scala
https://localhost/section-header/5.2.1.2%20Matching%20on%20
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.11.scala
https://localhost/section-header/5.2.1.3%20Matching%20on%20tuple%20
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.12.scala
https://localhost/section-header/5.2.1.4%20Matching%20on%20tuple%20
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.13.scala

5.2.2 Nested Matches
Patterns can also be nested, e.g. this example matches a string pattern within a case class pattern:

Patterns can be nested arbitrarily deeply. The following example matches string patterns, inside a case
class, inside a tuple:

5.2.1.5 Matching on Case Classes:

@ case class Point(x: Int, y: Int)

@ def direction(p: Point) = p match {

 case Point(0, 0) => "origin"

 case Point(_, 0) => "horizontal"

 case Point(0, _) => "vertical"

 case _ => "diagonal"

 }

@ direction(Point(0, 0))

res28: String = "origin"

@ direction(Point(1, 1))

res29: String = "diagonal"

@ direction(Point(10, 0))

res30: String = "horizontal" </> 5.14.scala

5.2.1.6 Matching on String Patterns:

(Note that pattern matching on string patterns only
supports simple glob-like patterns, and doesn't
support richer patterns like Regular Expressions. For
those, you can use the functionality of the
scala.util.matching.Regex class)

@ def splitDate(s: String) = s match {

 case s"$day-$month-$year" =>

 s"day: $day, mon: $month, yr: $year"

 case _ => "not a date"

 }

@ splitDate("9-8-1965")

res32: String = "day: 9, mon: 8, yr: 1965"

@ splitDate("9-8")

res33: String = "not a date" </> 5.15.scala

@ case class Person(name: String, title: String)

@ def greet(p: Person) = p match {

 case Person(s"$firstName $lastName", title) => println(s"Hello $title $lastName")

 case Person(name, title) => println(s"Hello $title $name")

 }

@ greet(Person("Haoyi Li", "Mr"))

Hello Mr Li

@ greet(Person("Who?", "Dr"))

Hello Dr Who? </> 5.16.scala

Chapter 5 Notable Scala Features 86

https://localhost/section-header/5.2.2%20Nested%20Matches
https://localhost/section-header/5.2.1.5%20Matching%20on%20Case%20Classes:
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.14.scala
https://localhost/section-header/5.2.1.6%20Matching%20on%20String%20Patterns:
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.15.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.16.scala

5.2.3 Loops and Vals
The last two places you an use pattern matching are inside for-loops and val definitions. Pattern matching
in for-loops is useful when you need to iterate over collections of tuples:

Pattern matching in val statements is useful when you are sure the value will match the given pattern, and
all you want to do is extract the parts you want. If the value doesn't match, this fails with an exception:

@ def greet2(husband: Person, wife: Person) = (husband, wife) match {

 case (Person(s"$first1 $last1", _), Person(s"$first2 $last2", _)) if last1 == last2 =>

 println(s"Hello Mr and Ms $last1")

 case (Person(name1, _), Person(name2, _)) => println(s"Hello $name1 and $name2")

 }

@ greet2(Person("James Bond", "Mr"), Person("Jane Bond", "Ms"))

Hello Mr and Ms Bond

@ greet2(Person("James Bond", "Mr"), Person("Jane", "Ms"))

Hello James Bond and Jane </> 5.17.scala

@ val a = Array[(Int, String)]((1, "one"), (2, "two"), (3, "three"))

@ for ((i, s) <- a) println(s + i)

one1

two2

three3 </> 5.18.scala

@ case class Point(x: Int, y: Int)

@ val p = Point(123, 456)

@ val Point(x, y) = p

x: Int = 123

y: Int = 456

</> 5.19.scala

@ val s"$first $second" = "Hello World"

first: String = "Hello"

second: String = "World"

@ val flipped = s"$second $first"

flipped: String = "World Hello"

@ val s"$first $second" = "Hello"

scala.MatchError: Hello </> 5.20.scala

Chapter 5 Notable Scala Features 87

https://localhost/section-header/5.2.3%20Loops%20and%20Vals
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.17.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.18.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.19.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.20.scala

5.2.4 Pattern Matching on Sealed Traits and Case Classes
Pattern matching lets you elegantly work with structured data comprising case classes and sealed traits. For
example, let's consider a simple sealed trait that represents arithmetic expressions:

Where BinOp stands for "Binary Operation". This can represent the arithmetic expressions, such as the
following

For now, we will ignore the parsing process that turns the string on the left into the structured case class
structure on the right: we will cover that in Chapter 19: Parsing Structured Text. Let us instead consider two
things you may want to do once you have parsed such an arithmetic expression to the case classes we see
above: we may want to print it to a human-friendly string, or we may want to evaluate it given some
variable values.

5.2.4.1 Stringifying Our Expressions

Converting the expressions to a string can be done using the following approach:

If an Expr is a Literal, the string is the value of the literal

If an Expr is a Variable, the string is the name of the variable

If an Expr is a BinOp, the string is the stringified left expression, followed by the operation, followed

by the stringified right expression

Converted to pattern matching code, this can be written as follows:

@ {

 sealed trait Expr

 case class BinOp(left: Expr, op: String, right: Expr) extends Expr

 case class Literal(value: Int) extends Expr

 case class Variable(name: String) extends Expr

 } </> 5.21.scala

x + 1 BinOp(Variable("x"), "+", Literal(1))

x * (y - 1) BinOp(

 Variable("x"),

 "*",

 BinOp(Variable("y"), "-", Literal(1))

) </> 5.22.scala

(x + 1) * (y - 1) BinOp(

 BinOp(Variable("x"), "+", Literal(1)),

 "*",

 BinOp(Variable("y"), "-", Literal(1))

) </> 5.23.scala

Chapter 5 Notable Scala Features 88

https://localhost/section-header/5.2.4%20Pattern%20Matching%20on%20Sealed%20Traits%20and%20Case%20Classes
https://localhost/section-header/5.2.4.1%20Stringifying%20Our%20Expressions
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.21.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.22.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.23.scala

We can construct some of Exprs we saw earlier and feed them into our stringify function to see the
output:

5.2.4.2 Evaluating Our Expressions

Evaluation is a bit more complex than stringifying the expressions, but only slightly. We need to pass in a
values map that holds the numeric value of every variable, and we need to treat +, -, and * operations
differently:

Overall, this looks relatively similar to the stringify function we wrote earlier: a recursive function that
pattern matches on the expr: Expr parameter to handle each case class that implements Expr. The cases
handling child-free Literal and Variable are trivial, while in the BinOp case we recurse on both left and
right children before combining the result. This is a common way of working with recursive data structures
in any language, and Scala's sealed traits, case classes and pattern matching make it concise and easy.

@ def stringify(expr: Expr): String = expr match {

 case BinOp(left, op, right) => s"(${stringify(left)} $op ${stringify(right)})"

 case Literal(value) => value.toString

 case Variable(name) => name

 } </> 5.24.scala

@ val smallExpr = BinOp(

 Variable("x"),

 "+",

 Literal(1)

)

@ stringify(smallExpr)

res52: String = "(x + 1)"
</> 5.25.scala

@ val largeExpr = BinOp(

 BinOp(Variable("x"), "+", Literal(1)),

 "*",

 BinOp(Variable("y"), "-", Literal(1))

)

@ stringify(largeExpr)

res54: String = "((x + 1) * (y - 1))"
</> 5.26.scala

@ def evaluate(expr: Expr, values: Map[String, Int]): Int = expr match {

 case BinOp(left, "+", right) => evaluate(left, values) + evaluate(right, values)

 case BinOp(left, "-", right) => evaluate(left, values) - evaluate(right, values)

 case BinOp(left, "*", right) => evaluate(left, values) * evaluate(right, values)

 case Literal(value) => value

 case Variable(name) => values(name)

 }

@ evaluate(smallExpr, Map("x" -> 10))

res56: Int = 11

@ evaluate(largeExpr, Map("x" -> 10, "y" -> 20))

res57: Int = 209 </> 5.27.scala

Chapter 5 Notable Scala Features 89

https://localhost/section-header/5.2.4.2%20Evaluating%20Our%20Expressions
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.24.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.25.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.26.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.27.scala

This Expr structure and the printer and evaluator we have written are intentionally simplistic, just to give us
a chance to see how pattern matching can be used to easily work with structured data modeled as case
classes and sealed traits. We will be exploring these techniques much more deeply in Chapter 20:
Implementing a Programming Language.

5.3 By-Name Parameters

Scala also supports "by-name" method parameters using a : => T syntax, which are evaluated each time
they are referenced in the method body. This has three primary use cases:

1. Avoiding evaluation if the argument does not end up being used

2. Wrapping evaluation to run setup and teardown code before and after the argument evaluates

3. Repeating evaluation of the argument more than once

5.3.1 Avoiding Evaluation
The following log method uses a by-name parameter to avoid evaluating the msg: => String unless it is
actually going to get printed. This can help avoid spending CPU time constructing log messages (here via
"Hello " + 123 + " World") even when logging is disabled:

Often a method does not end up using all of its arguments all the time. In the above example, by not
computing log messages when they are not needed, we can save a significant amount of CPU time and
object allocations which may make a difference in performance-sensitive applications.

The getOrElse and getOrElseUpdate methods we saw in Chapter 4: Scala Collections are similar: these
methods do not use the argument representing the default value if the value we are looking for is already
present. By making the default value a by-name parameter, we do not have to evaluate it in the case where
it does not get used.

See example 5.3 - PatternMatching

@ def func(arg: => String) = ...

@ var logLevel = 1

@ def log(level: Int, msg: => String) = {

 if (level > logLevel) println(msg)

 }

</> 5.28.scala

@ log(2, "Hello " + 123 + " World")

Hello 123 World

@ logLevel = 3

@ log(2, "Hello " + 123 + " World")

<no output> </> 5.29.scala

Chapter 5 Notable Scala Features 90

https://localhost/section-header/5.3%20By-Name%20Parameters
https://localhost/section-header/5.3.1%20Avoiding%20Evaluation
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.3%20-%20PatternMatching
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.28.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.29.scala

5.3.2 Wrapping Evaluation
Using by-name parameters to "wrap" the evaluation of your method in some setup/teardown code is
another common pattern. The following measureTime function defers evaluation of f: => Unit, allowing us
to run System.currentTimeMillis() before and after the argument is evaluated and thus print out the
time taken:

There are many other use cases for such wrapping:

Setting some thread-local context while the argument is being evaluated

Evaluating the argument inside a try-catch block so we can handle exceptions

Evaluating the argument in a Future so the logic runs asynchronously on another thread

These are all cases where using by-name parameter can help.

@ def measureTime(f: => Unit) = {

 val start = System.currentTimeMillis()

 f

 val end = System.currentTimeMillis()

 println("Evaluation took " + (end - start) + " milliseconds")

 }

@ measureTime(new Array[String](10 * 1000 * 1000).hashCode())

Evaluation took 24 milliseconds

@ measureTime { // methods taking a single arg can also be called with curly brackets

 new Array[String](100 * 1000 * 1000).hashCode()

 }

Evaluation took 287 milliseconds </> 5.30.scala

Chapter 5 Notable Scala Features 91

https://localhost/section-header/5.3.2%20Wrapping%20Evaluation
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.30.scala

5.3.3 Repeating Evaluation
The last use case we will cover for by-name parameters is repeating evaluation of the method argument.
The following snippet defines a generic retry method: this method takes in an argument, evaluates it
within a try-catch block, and re-executes it on failure with a maximum number of attempts. We test this by
using it to wrap a call which may fail, and seeing the retrying messages get printed to the console.

Above we define retry as a generic function taking a type parameter [T], taking a by-name parameter that
computes a value of type T, and returning a T once the code block is successful. We can then use retry to
wrap a code block of any type, and it will retry that block and return the first T it successfully computes.

Making retry take a by-name parameter is what allows it to repeat evaluation of the requests.get block
where necessary. Other use cases for repetition include running performance benchmarks or performing
load tests. In general, by-name parameters aren't something you use very often, but when necessary they
let you write code that manipulates the evaluation of a method argument in a variety of useful ways:
instrumenting it, retrying it, eliding it, etc.

We will learn more about the requests library that we used in the above snippet in Chapter 12: Working
with HTTP APIs.

@ def retry[T](max: Int)(f: => T): T = {

 var tries = 0

 var result: Option[T] = None

 while (result == None) {

 try { result = Some(f) }

 catch {case e: Throwable =>

 tries += 1

 if (tries > max) throw e

 else {

 println(s"failed, retry #$tries")

 }

 }

 }

 result.get

 } </> 5.31.scala

@ val httpbin = "https://httpbin.org"

@ retry(max = 5) {

 // Only succeeds with a 200 response

 // code 1/3 of the time

 requests.get(

 s"$httpbin/status/200,400,500"

)

 }

call failed, retry #1

call failed, retry #2

res68: requests.Response = Response(

 "https://httpbin.org/status/200,400,500",

 200,

... </> 5.32.scala

See example 5.4 - ByName

Chapter 5 Notable Scala Features 92

https://localhost/section-header/5.3.3%20Repeating%20Evaluation
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.31.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.32.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.4%20-%20ByName

5.4 Implicit Parameters
An implicit parameter is a parameter that is automatically filled in for you when calling a function. For
example, consider the following class Foo and the function bar that takes an implicit foo: Foo
parameter:

If you try to call bar without an implicit Foo in scope, you get a compilation error. To call bar, you need to
define an implicit value of the type Foo, such that the call to bar can automatically resolve it from the
enclosing scope:

Implicit parameters are similar to the default values we saw in Chapter 3: Basic Scala. Both of them allow
you to pass in a value explicitly or fall back to some default. The main difference is that while default values
are "hard coded" at the definition site of the method, implicit parameters take their default value from
whatever implicit is in scope at the call-site.

We'll now look into a more concrete example where using implicit parameters can help keep your code
clean and readable, before going into a more advanced use case of the feature for Typeclass Inference (5.5).

@ class Foo(val value: Int)

@ def bar(implicit foo: Foo) = foo.value + 10 </> 5.33.scala

@ bar

cmd4.sc:1: could not find implicit

 value for parameter foo: Foo

val res4 = bar

 ^

Compilation Failed

</> 5.34.scala

@ implicit val foo: Foo = new Foo(1)

foo: Foo = ammonite.$sess.cmd1$Foo@451882b2

@ bar // `foo` is resolved implicitly

res72: Int = 11

@ bar(foo) // passing in `foo` explicitly

res73: Int = 11 </> 5.35.scala

Chapter 5 Notable Scala Features 93

https://localhost/section-header/5.4%20Implicit%20Parameters
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.33.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.34.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.35.scala

5.4.1 Passing ExecutionContext to Futures
As an example, code using Future needs an ExecutionContext value in order to work. As a result, we end
up passing this ExecutionContext everywhere, which is tedious and verbose:

getEmployee and getRole perform asynchronous actions, which we then map and flatMap to do further
work. Exactly how the Futures work is beyond the scope of this section: for now, what is notable is how
every operation needs to be passed the executionContext to do their work. We will will revisit these APIs
in Chapter 13: Fork-Join Parallelism with Futures.

Without implicit parameters, we have the following options:

Passing executionContext explicitly is verbose and can make your code harder to read: the logic we
care about is drowned in a sea of boilerplate executionContext passing

Making executionContext global would be concise, but would lose the flexibility of passing different
values in different parts of your program

Putting executionContext into a thread-local variable would maintain flexibility and conciseness, but
it is error-prone and easy to forget to set the thread-local before running code that needs it

All of these options have tradeoffs, forcing us to either sacrifice conciseness, flexibility, or safety. Scala's
implicit parameters provide a fourth option: passing executionContext implicitly, which gives us the
conciseness, flexibility, and safety that the above options are unable to give us.

def getEmployee(ec: ExecutionContext, id: Int): Future[Employee] = ...

def getRole(ec: ExecutionContext, employee: Employee): Future[Role] = ...

val executionContext: ExecutionContext = ...

val bigEmployee: Future[EmployeeWithRole] = {

 getEmployee(executionContext, 100).flatMap(

 executionContext,

 e =>

 getRole(executionContext, e)

 .map(executionContext, r => EmployeeWithRole(e, r))

)

} </> 5.36.scala

Chapter 5 Notable Scala Features 94

https://localhost/section-header/5.4.1%20Passing%20ExecutionContext%20to%20Futures
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.36.scala

5.4.2 Dependency Injection via Implicits
To resolve these issues, we can make all these functions take the executionContext as an implicit
parameter. This is already the case for standard library operations like flatMap and map on Futures, and
we can modify our getEmployee and getRole functions to follow suit. By defining executionContext as an
implicit, it will automatically get picked up by all the method calls below.

Using implicit parameters can help clean up code where we pass the same shared context or configuration
object throughout your entire application:

By making the "uninteresting" parameter passing implicit, it can focus the reader's attention on the
core logic of your application.

Since implicit parameters can be passed explicitly, they preserve the flexibility for the developer in
case they want to manually specify or override the implicit parameter being passed.

The fact that missing implicits are a compile time error makes their usage much less error-prone than
thread-locals. A missing implicit will be caught early on before code is compiled and deployed to
production.

def getEmployee(id: Int)(implicit ec: ExecutionContext): Future[Employee] = ...

def getRole(employee: Employee)(implicit ec: ExecutionContext): Future[Role] = ...

implicit val executionContext: ExecutionContext = ...

val bigEmployee: Future[EmployeeWithRole] = {

 getEmployee(100).flatMap(e =>

 getRole(e).map(r =>

 EmployeeWithRole(e, r)

)

)

} </> 5.37.scala

See example 5.5 - ImplicitParameters

Chapter 5 Notable Scala Features 95

https://localhost/section-header/5.4.2%20Dependency%20Injection%20via%20Implicits
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.37.scala
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.5%20-%20ImplicitParameters

5.5 Typeclass Inference
A second way that implicit parameters are useful is by using them to associate values to types. This is often
called a typeclass, the term originating from the Haskell programming language, although it has nothing to
do with types and classes in Scala. While typeclasses are a technique built on the same implicit language
feature described earlier, they are an interesting and important enough technique to deserve their own
section in this chapter.

5.5.1 Problem Statement: Parsing Command Line Arguments
Let us consider the task of parsing command-line arguments, given as Strings, into Scala values of various
types: Ints, Booleans, Doubles, etc. This is a common task that almost every program has to deal with,
either directly or by using a library.

A first sketch may be writing a generic method to parse the values. The signature might look something like
this:

On the surface this seems impossible to implement:

How does the parseCliArgument know how to convert the given String into an arbitrary T?

How does it know what types T a command-line argument can be parsed into, and which it cannot?
For example, we should not be able to parse a java.net.DatagramSocket from an input string.

5.5.2 Separate Parser Objects
A second sketch at a solution may be to define separate parser objects, one for each type we need to be
able to parse. For example:

We can then call these as follows:

def parseFromString[T](s: String): T = ...

val args = Seq("123", "true", "7.5")

val myInt = parseFromString[Int](args(0))

val myBoolean = parseFromString[Boolean](args(1))

val myDouble = parseFromString[Double](args(2)) </> 5.38.scala

trait StrParser[T]{ def parse(s: String): T }

object ParseInt extends StrParser[Int]{ def parse(s: String) = s.toInt }

object ParseBoolean extends StrParser[Boolean]{ def parse(s: String) = s.toBoolean }

object ParseDouble extends StrParser[Double]{ def parse(s: String) = s.toDouble }
</> 5.39.scala

Chapter 5 Notable Scala Features 96

https://localhost/section-header/5.5%20Typeclass%20Inference
https://localhost/section-header/5.5.1%20Problem%20Statement:%20Parsing%20Command%20Line%20Arguments
https://localhost/section-header/5.5.2%20Separate%20Parser%20Objects
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.38.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.39.scala

This works. However, it then leads to another problem: if we wanted to write a method that didn't parse a
String directly, but parsed a value from the console, how would we do that? We have two options.

5.5.2.1 Re-Using Our StrParsers

The first option is writing a whole new set of objects dedicated to parsing from the console:

The second option is defining a helper method that receives a StrParser[T] as an argument, which we
would need to pass in to tell it how to parse the type T

Both of these solutions are clunky:

1. The first because we need to duplicate all the Int/Boolean/Double/etc. parsers. What if we need to
parse input from the network? From files? We would need to duplicate every parser for each case.

2. The second because we need to pass these ParseFoo objects everywhere. Often there is only a single
StrParser[Int] we can pass to parseFromConsole[Int]. Why can't the compiler infer it for us?

val args = Seq("123", "true", "7.5")

val myInt = ParseInt.parse(args(0))

val myBoolean = ParseBoolean.parse(args(1))

val myDouble = ParseDouble.parse(args(2)) </> 5.40.scala

trait ConsoleParser[T]{ def parse(): T }

object ConsoleParseInt extends ConsoleParser[Int]{

 def parse() = scala.Console.in.readLine().toInt

}

object ConsoleParseBoolean extends ConsoleParser[Boolean]{

 def parse() = scala.Console.in.readLine().toBoolean

}

object ConsoleParseDouble extends ConsoleParser[Double]{

 def parse() = scala.Console.in.readLine().toDouble

}

val myInt = ConsoleParseInt.parse()

val myBoolean = ConsoleParseBoolean.parse()

val myDouble = ConsoleParseDouble.parse() </> 5.41.scala

def parseFromConsole[T](parser: StrParser[T]) = parser.parse(scala.Console.in.readLine())

val myInt = parseFromConsole[Int](ParseInt)

val myBoolean = parseFromConsole[Boolean](ParseBoolean)

val myDouble = parseFromConsole[Double](ParseDouble) </> 5.42.scala

Chapter 5 Notable Scala Features 97

https://localhost/section-header/5.5.2.1%20Re-Using%20Our%20StrParsers
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.40.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.41.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.42.scala

5.5.3 Solution: Implicit StrParser
The solution to the problems above is to make the instances of StrParser implicit:

We put the implicit object ParseInt, ParseBoolean, etc. in an object StrParser with the same name as
the trait StrParser next to it. An object with the same name as a class that it is defined next to is called
a companion object. Companion objects are often used to group together implicits, static methods, factory
methods, and other functionality that is related to a trait or class but does not belong to any specific
instance. Implicits in the companion object are also treated specially, and do not need to be imported into
scope in order to be used as an implicit parameter.

Note that if you are entering this into the Ammonite Scala REPL, you need to surround both declarations
with an extra pair of curly brackets {...} so that both the trait and object are defined in the same REPL
command.

Now, while we can still explicitly call ParseInt.parse(args(0)) to parse literal strings as before, we can
now write a generic function that automatically uses the correct instance of StrParser depending on what
type we asked it to parse:

This looks similar to our initial sketch, except by taking an (implicit parser: StrParser[T]) parameter
the function can now automatically infer the correct StrParser for each type it is trying to parse.

trait StrParser[T]{ def parse(s: String): T }

object StrParser{

 implicit object ParseInt extends StrParser[Int]{

 def parse(s: String) = s.toInt

 }

 implicit object ParseBoolean extends StrParser[Boolean]{

 def parse(s: String) = s.toBoolean

 }

 implicit object ParseDouble extends StrParser[Double]{

 def parse(s: String) = s.toDouble

 }

} </> 5.43.scala

def parseFromString[T](s: String)(implicit parser: StrParser[T]) = {

 parser.parse(s)

}

val args = Seq("123", "true", "7.5")

val myInt = parseFromString[Int](args(0))

val myBoolean = parseFromString[Boolean](args(1))

val myDouble = parseFromString[Double](args(2)) </> 5.44.scala

Chapter 5 Notable Scala Features 98

https://localhost/section-header/5.5.3%20Solution:%20Implicit%20StrParser
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.43.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.44.scala

5.5.3.1 Re-Using Our Implicit StrParsers

Making our StrParser[T]s implicit means we can re-use them without duplicating our parsers or passing
them around manually. For example, we can write a function that parses strings from the console:

The call to parseFromConsole[Int] automatically infers the StrParser.ParseInt implicit in the StrParser
companion object, without needing to duplicate it or tediously pass it around. That makes it very easy to
write code that works with a generic type T as long as T has a suitable StrParser.

5.5.3.2 Context-Bound Syntax

This technique of taking an implicit parameter with a generic type is common enough that the Scala
language provides dedicated syntax for it. The following method signature:

Can be written more concisely as:

This syntax is referred to as a context bound, and it is semantically equivalent to the (implicit parser:
StrParser[T]) syntax above. When using the context bound syntax, the implicit parameter isn't given a
name, and so we cannot call parser.parse like we did earlier. Instead, we can resolve the implicit values
via the implicitly function, e.g. implicitly[StrParser[T]].parse.

5.5.3.3 Compile-Time Implicit Safety

As Typeclass Inference uses the the same implicit language feature we saw earlier, mistakes such as
attempting to call parseFromConsole with an invalid type produce a compile error:

Similarly, if you try to call a method taking an (implicit parser: StrParser[T]) from another method that
does not have such an implicit available, the compiler will also raise an error:

def parseFromConsole[T](implicit parser: StrParser[T]) = {

 parser.parse(scala.Console.in.readLine())

}

val myInt = parseFromConsole[Int] </> 5.45.scala

def parseFromString[T](s: String)(implicit parser: StrParser[T]) = ...

def parseFromString[T: StrParser](s: String) = ...

@ val myDatagramSocket = parseFromConsole[java.net.DatagramSocket]

cmd19.sc:1: could not find implicit value for parameter parser:

 ammonite.$sess.cmd11.StrParser[java.net.DatagramSocket]

val myDatagramSocket = parseFromConsole[java.net.DatagramSocket]

 ^

Compilation Failed </> 5.46.scala

Chapter 5 Notable Scala Features 99

https://localhost/section-header/5.5.3.1%20Re-Using%20Our%20Implicit%20StrParsers
https://localhost/section-header/5.5.3.2%20Context-Bound%20Syntax
https://localhost/section-header/5.5.3.3%20Compile-Time%20Implicit%20Safety
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.45.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.46.scala

Most of the things we have done with Typeclass Inference could also be achieved using runtime reflection.
However, relying on runtime reflection is fragile, and it is very easy for mistakes, bugs, or mis-configurations
to make it to production before failing catastrophically. In contrast, Scala's implicit feature lets you achieve
the same outcome but in a safe fashion: mistakes are caught early at compile-time, and you can fix them at
your leisure rather than under the pressure of a ongoing production outage.

5.5.4 Recursive Typeclass Inference
We have already seen how we can use the typeclass technique to automatically pick which StrParser to
use based on the type we want to parse to. This can also work for more complex types, where we tell the
compiler we want a Seq[Int], (Int, Boolean), or even nested types like Seq[(Int, Boolean)], and the
compiler will automatically assemble the logic necessary to parse the type we want.

5.5.4.1 Parsing Sequences

For example, the following ParseSeq function provides a StrParser[Seq[T]] for any T which itself has an
implicit StrParser[T] in scope:

Note that unlike the implicit objects we defined earlier which are singletons, here we have an implicit
def. Depending on the type T, we would need a different StrParser[T], and thus need a different
StrParser[Seq[T]]. implicit def ParseSeq would thus return a different StrParser each time it is called
with a different type T.

From this one defintion, we can now parse Seq[Boolean]s, Seq[Int]s, etc.

What we are effectively doing is teaching the compiler how to produce a StrParser[Seq[T]] for any type T
as long as it has an implicit StrParser[T] available. Since we already have StrParser[Int],
StrParser[Boolean], and StrParser[Double] available, the ParseSeq method gives StrParser[Seq[Int]],
StrParser[Seq[Boolean]], and StrParser[Seq[Double]] for free.

@ def genericMethodWithoutImplicit[T](s: String) = parseFromString[T](s)

cmd2.sc:1: could not find implicit value for parameter parser:

 ammonite.$sess.cmd0.StrParser[T]

def genericMethodWithoutImplicit[T](s: String) = parseFromString[T](s)

 ^

Compilation Failed </> 5.47.scala

implicit def ParseSeq[T](implicit p: StrParser[T]) = new StrParser[Seq[T]]{

 def parse(s: String) = s.split(',').toSeq.map(p.parse)

} </> 5.48.scala

@ parseFromString[Seq[Boolean]]("true,false,true")

res99: Seq[Boolean] = ArraySeq(true, false, true)

@ parseFromString[Seq[Int]]("1,2,3,4")

res100: Seq[Int] = ArraySeq(1, 2, 3, 4) </> 5.49.scala

Chapter 5 Notable Scala Features 100

https://localhost/section-header/5.5.4%20Recursive%20Typeclass%20Inference
https://localhost/section-header/5.5.4.1%20Parsing%20Sequences
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.47.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.48.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.49.scala

The StrParser[Seq[T]] we are instantiating has a parse method that receives a parameter s: String and
returns a Seq[T]. We just needed to implement the logic necessary to do that transformation, which we
have done in the code snippet above.

5.5.4.2 Parsing Tuples

Similar to how we defined an implicit def to parse Seq[T]s, we could do the same to parse tuples. We do
so below by assuming that tuples are represented by key=value pairs in the input string:

This definition produces a StrParser[(T, V)], but only for a type T and type V for which there are
StrParsers available. Now we can parse tuples, as =-separated pairs:

5.5.4.3 Parsing Nested Structures

The two definitions above, implicit def ParseSeq and implicit def ParseTuple, are enough to let us also
parse sequences of tuples, or tuples of sequences:

Note that in this case we cannot handle nested Seq[Seq[T]]s or nested tuples due to how we're naively
splitting the input string. A more structured parser handles such cases without issues, allowing us to specify
an arbitrarily complex output type and automatically inferring the necessary parser. We will use a
serialization library that uses this technique in Chapter 8: JSON and Binary Data Serialization.

Most statically typed programming languages can infer types to some degree: even if not every expression
is annotated with an explicit type, the compiler can still figure out the types based on the program
structure. Typeclass derivation is effectively the reverse: by providing an explicit type, the compiler can infer
the program structure necessary to provide a value of the type we are looking for.

implicit def ParseTuple[T, V](implicit p1: StrParser[T], p2: StrParser[V]) =

 new StrParser[(T, V)]{

 def parse(s: String) = {

 val Array(left, right) = s.split('=')

 (p1.parse(left), p2.parse(right))

 }

 } </> 5.50.scala

@ parseFromString[(Int, Boolean)]("123=true")

res102: (Int, Boolean) = (123, true)

@ parseFromString[(Boolean, Double)]("true=1.5")

res103: (Boolean, Double) = (true, 1.5) </> 5.51.scala

@ parseFromString[Seq[(Int, Boolean)]]("1=true,2=false,3=true,4=false")

res104: Seq[(Int, Boolean)] = ArraySeq((1, true), (2, false), (3, true), (4, false))

@ parseFromString[(Seq[Int], Seq[Boolean])]("1,2,3,4,5=true,false,true")

res105: (Seq[Int], Seq[Boolean]) = (ArraySeq(1, 2, 3, 4, 5), ArraySeq(true, false, true))
</> 5.52.scala

Chapter 5 Notable Scala Features 101

https://localhost/section-header/5.5.4.2%20Parsing%20Tuples
https://localhost/section-header/5.5.4.3%20Parsing%20Nested%20Structures
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.50.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.51.scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.52.scala

In the example above, we just need to define how to handle the basic types - how to produce a
StrParser[Boolean], StrParser[Int], StrParser[Seq[T]], StrParser[(T, V)] - and the compiler is able
to figure out how to produce a StrParser[Seq[(Int, Boolean)]] when we need it.

5.6 Conclusion
In this chapter, we have explored some of the more unique features of Scala. Case Classes or Pattern
Matching you will use on a daily basis, while By-Name Parameters, Implicit Parameters, or Typeclass
Inference are more advanced tools that you might only use when dictated by a framework or library.
Nevertheless, these are the features that make the Scala language what it is, providing a way to tackle
difficult problems more elegantly than most mainstream languages allow.

We have walked through the basic motivation and use cases for these features in this chapter. You will get
familiar with more use cases as we see the features in action throughout the rest of this book.

This chapter will be the last in which we discuss the Scala programming language in isolation: subsequent
chapters will introduce you to much more complex topics like working with your operating system, remote
services, and third-party libraries. The Scala language fundamentals you have learned so far will serve you
well as you broaden your horizons, from learning about the Scala language itself to using the Scala language
to solve real-world problems.

See example 5.6 - TypeclassInference

Exercise: Define a function that uses pattern matching on the Exprs we saw earlier to perform
simple algebraic simplifications:

See example 5.7 - Simplify

(1 + 1) 2

((1 + 1) * x) (2 * x)

((2 - 1) * x) x

(((1 + 1) * y) + ((1 - 1) * x)) (2 * y)

Exercise: Modify the def retry function earlier that takes a by-name parameter and make it perform
an exponential backoff, sleeping between retries, with a configurable initial delay in milliseconds:

See example 5.8 - Backoff

retry(max = 50, delay = 100 /*milliseconds*/) {

 requests.get(s"$httpbin/status/200,400,500")

} </> 5.53.scala

Chapter 5 Notable Scala Features 102

https://localhost/section-header/5.6%20Conclusion
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.6%20-%20TypeclassInference
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.7%20-%20Simplify
https://github.com/handsonscala/handsonscala/tree/v1/examples/5.8%20-%20Backoff
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.53.scala

Exercise: Modify the typeclass-based parseFromString method we saw earlier to take a JSON-like
format, where lists are demarcated by square brackets with comma-separated elements. This should
allow it to parse and construct arbitrarily deep nested data structures automatically via typeclass
inference:

A production-ready version of this parseFromString method exists in upickle.default.read, which
we will see in Chapter 8: JSON and Binary Data Serialization.

See example 5.9 - Deserialize

@ parseFromString[Seq[Boolean]]("[true,false,true]") // 1 layer of nesting

res1: Seq[Boolean] = List(true, false, true)

@ parseFromString[Seq[(Seq[Int], Seq[Boolean])]](// 3 layers of nesting

 "[[[1],[true]],[[2,3],[false,true]],[[4,5,6],[false,true,false]]]"

)

res2: Seq[(Seq[Int], Seq[Boolean])] = List(

 (List(1), List(true)),

 (List(2, 3), List(false, true)),

 (List(4, 5, 6), List(false, true, false))

)

@ parseFromString[Seq[(Seq[Int], Seq[(Boolean, Double)])]](// 4 layers of nesting

 "[[[1],[[true,0.5]]],[[2,3],[[false,1.5],[true,2.5]]]]"

)

res3: Seq[(Seq[Int], Seq[(Boolean, Double)])] = List(

 (List(1), List((true, 0.5))),

 (List(2, 3), List((false, 1.5), (true, 2.5)))

) </> 5.54.scala

Chapter 5 Notable Scala Features 103

https://github.com/handsonscala/handsonscala/tree/v1/examples/5.9%20-%20Deserialize
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.54.scala

Exercise: How about using typeclasses to generate JSON, rather than parse it? Write a
writeToString method that uses a StrWriter typeclass to take nested values parsed by
parseFromString, and serialize them to the same strings they were parsed from.

See example 5.10 - Serialize

@ writeToString[Seq[Boolean]](Seq(true, false, true))

res1: String = "[true,false,true]"

@ writeToString(Seq(true, false, true)) // type can be inferred

res2: String = "[true,false,true]"

@ writeToString[Seq[(Seq[Int], Seq[Boolean])]](

 Seq(

 (Seq(1), Seq(true)),

 (Seq(2, 3), Seq(false, true)),

 (Seq(4, 5, 6), Seq(false, true, false))

)

)

res3: String = "[[[1],[true]],[[2,3],[false,true]],[[4,5,6],[false,true,false]]]"

@ writeToString(

 Seq(

 (Seq(1), Seq((true, 0.5))),

 (Seq(2, 3), Seq((false, 1.5), (true, 2.5)))

)

)

res4: String = "[[[1],[[true,0.5]]],[[2,3],[[false,1.5],[true,2.5]]]]"</> 5.55.scala

Discuss Chapter 5 online at https://www.handsonscala.com/discuss/5

Chapter 5 Notable Scala Features 104

https://github.com/handsonscala/handsonscala/tree/v1/examples/5.10%20-%20Serialize
https://github.com/handsonscala/handsonscala/blob/v1/snippets/5.55.scala
https://www.handsonscala.com/discuss/5

Part II: Local Development
6 Implementing Algorithms in Scala 107

7 Files and Subprocesses 109

8 JSON and Binary Data Serialization 111

9 Self-Contained Scala Scripts 113

10 Static Build Pipelines 115

The second part of this book explores the core tools and techniques necessary for writing Scala applications
that run on a single computer. We will cover algorithms, files and subprocess management, data
serialization, scripts and build pipelines. This chapter builds towards a capstone project where we write an
efficient incremental static site generator using the Scala language.

105

https://localhost/section-header/%20Part%20II:%20Local%20Development

106

6
Implementing Algorithms in Scala

6.1 Merge Sort (not in sample)

6.2 Prefix Tries (not in sample)

6.3 Breadth First Search (not in sample)

6.4 Shortest Paths (not in sample)

Snippet 6.1: a simple breadth-first-search algorithm we will implement using Scala in this chapter

In this chapter, we will walk you through the implementation of a number of common algorithms using the
Scala programming language. These algorithms are commonly taught in schools and tested at professional
job interviews, so you have likely seen them before.

By implementing them in Scala, we aim to get you more familiar with using the Scala programming
language to solve small problems in isolation. We will also see how some of the unique language features
we saw in Chapter 5: Notable Scala Features can be applied to simplify the implementation of these well-
known algorithms. This will prepare us for subsequent chapters which will expand in scope to include many
different kinds of systems, APIs, tools and techniques.

def breadthFirstSearch[T](start: T, graph: Map[T, Seq[T]]): Set[T] = {

 val seen = collection.mutable.Set(start)

 val queue = collection.mutable.ArrayDeque(start)

 while (queue.nonEmpty) {

 val current = queue.removeHead()

 for (next <- graph(current) if !seen.contains(next)) {

 seen.add(next)

 queue.append(next)

 }

 }

 seen.toSet

} </> 6.1.scala

107

https://localhost/section-header/6%20Implementing%20Algorithms%20in%20Scala
https://github.com/handsonscala/handsonscala/blob/v1/snippets/6.1.scala

Chapter 6 Implementing Algorithms in Scala 108

7
Files and Subprocesses

7.1 Paths (not in sample)

7.2 Filesystem Operations (not in sample)

7.3 Folder Syncing (not in sample)

7.4 Simple Subprocess Invocations (not in sample)

7.5 Interactive and Streaming Subprocesses (not in sample)

Snippet 7.1: a short Scala code snippet to find the five largest files in a directory tree

Working with files and subprocesses is one of the most common things you do in programming: from the
Bash shell, to Python or Ruby scripts, to large applications written in a compiled language. At some point
everyone will have to write to a file or talk to a subprocess. This chapter will walk you through how to
perform basic file and subprocess operations in Scala.

This chapter finishes with two small projects: building a simple file synchronizer, and building a streaming
subprocess pipeline. These projects will form the basis for Chapter 17: Multi-Process Applications and
Chapter 18: Building a Real-time File Synchronizer

@ os.walk(os.pwd).filter(os.isFile).map(p => (os.size(p), p)).sortBy(-_._1).take(5)

res60: IndexedSeq[(Long, os.Path)] = ArrayBuffer(

 (6340270L, /Users/lihaoyi/test/post/Reimagining/GithubHistory.gif),

 (6008395L, /Users/lihaoyi/test/post/SmartNation/routes.json),

 (5499949L, /Users/lihaoyi/test/post/slides/Why-You-Might-Like-Scala.js.pdf),

 (5461595L, /Users/lihaoyi/test/post/slides/Cross-Platform-Development-in-Scala.js.pdf),

 (4576936L, /Users/lihaoyi/test/post/Reimagining/FluentSearch.gif)

) </> 7.1.scala

109

https://localhost/section-header/7%20Files%20and%20Subprocesses
https://github.com/handsonscala/handsonscala/blob/v1/snippets/7.1.scala

Chapter 7 Files and Subprocesses 110

8
JSON and Binary Data Serialization

8.1 Manipulating JSON (not in sample)

8.2 JSON Serialization of Scala Data Types (not in sample)

8.3 Writing your own Generic Serialization Methods (not in sample)

8.4 Binary Serialization (not in sample)

Snippet 8.1: manipulating a JSON tree structure in the Scala REPL

Data serialization is an important tool in any programmer's toolbox. While variables and classes are enough
to store data within a process, most data tends to outlive a single program process: whether saved to disk,
exchanged between processes, or sent over the network. This chapter will cover how to serialize your Scala
data structures to two common data formats - textual JSON and binary MessagePack - and how you can
interact with the structured data in a variety of useful ways.

The JSON workflows we learn in this chapter will be used later in Chapter 12: Working with HTTP APIs and
Chapter 14: Simple Web and API Servers, while the binary serialization techniques we learn here will be
used later in Chapter 17: Multi-Process Applications.

@ val output = ujson.Arr(

 ujson.Obj("hello" -> "world", "answer" -> 42),

 true

)

@ output(0)("hello") = "goodbye"

@ output(0)("tags") = ujson.Arr("awesome", "yay", "wonderful")

@ println(output)

[{"hello":"goodbye","answer":42,"tags":["awesome","yay","wonderful"]},true] </> 8.1.scala

111

https://localhost/section-header/8%20JSON%20and%20Binary%20Data%20Serialization
https://github.com/handsonscala/handsonscala/blob/v1/snippets/8.1.scala

Chapter 8 JSON and Binary Data Serialization 112

9
Self-Contained Scala Scripts

9.1 Reading Files Off Disk (not in sample)

9.2 Rendering HTML with Scalatags (not in sample)

9.3 Rendering Markdown with Commonmark-Java (not in sample)

9.4 Links and Bootstrap (not in sample)

9.5 Optionally Deploying the Static Site (not in sample)

Snippet 9.1: rendering a HTML page using the third-party Scalatags HTML library

Scala Scripts are a great way to write small programs. Each script is self-contained and can download its
own dependencies when necessary, and make use of both Java and Scala libraries. This lets you write and
distribute scripts without spending time fiddling with build configuration or library installation.

In this chapter, we will write a static site generator script that uses third-party libraries to process
Markdown input files and generate a set of HTML output files, ready for deployment on any static file
hosting service. This will form the foundation for Chapter 10: Static Build Pipelines, where we will turn the
static site generator into an efficient incremental build pipeline by using the Mill build tool.

os.write(

 os.pwd / "out" / "index.html",

 doctype("html")(

 html(

 body(

 h1("Blog"),

 for ((_, suffix, _) <- postInfo)

 yield h2(a(href := ("post/" + mdNameToHtml(suffix)))(suffix))

)

)

)

) </> 9.1.scala

113

https://localhost/section-header/9%20Self-Contained%20Scala%20Scripts
https://github.com/handsonscala/handsonscala/blob/v1/snippets/9.1.scala

Chapter 9 Self-Contained Scala Scripts 114

10
Static Build Pipelines

10.1 Mill Build Pipelines (not in sample)

10.2 Mill Modules (not in sample)

10.3 Revisiting our Static Site Script (not in sample)

10.4 Conversion to a Mill Build Pipeline (not in sample)

10.5 Extending our Static Site Pipeline (not in sample)

Snippet 10.1: the definition of a simple Mill build pipeline

Build pipelines are a common pattern, where you have files and assets you want to process but want to do
so efficiently, incrementally, and in parallel. This usually means only re-processing files when they change,
and re-using the already processed assets as much as possible. Whether you are compiling Scala, minifying
Javascript, or compressing tarballs, many of these file-processing workflows can be slow. Parallelizing these
workflows and avoiding unnecessary work can greatly speed up your development cycle.

This chapter will walk through how to use the Mill build tool to set up these build pipelines, and
demonstrate the advantages of a build pipeline over a naive build script. We will take the the simple static
site generator we wrote in Chapter 9: Self-Contained Scala Scripts and convert it into an efficient build
pipeline that can incrementally update the static site as you make changes to the sources. We will be using
the Mill build tool in several of the projects later in the book, starting with Chapter 14: Simple Web and API
Servers.

import mill._

def srcs = T.source(millSourcePath / "src")

def concat = T{

 os.write(T.dest / "concat.txt", os.list(srcs().path).map(os.read(_)))

 PathRef(T.dest / "concat.txt")

} </> 10.1.scala

115

https://localhost/section-header/10%20Static%20Build%20Pipelines
http://www.lihaoyi.com/mill/
https://github.com/handsonscala/handsonscala/blob/v1/snippets/10.1.scala

Chapter 10 Static Build Pipelines 116

Part III: Web Services
11 Scraping Websites 119

12 Working with HTTP APIs 121

13 Fork-Join Parallelism with Futures 123

14 Simple Web and API Servers 125

15 Querying SQL Databases 127

The third part of this book covers using Scala in a world of servers and clients, systems and services. We will
explore using Scala both as a client and as a server, exchanging HTML and JSON over HTTP or Websockets.
This part builds towards two capstone projects: a parallel web crawler and an interactive chat website, each
representing common use cases you are likely to encounter using Scala in a networked, distributed
environment.

117

https://localhost/section-header/%20Part%20III:%20Web%20Services

118

11
Scraping Websites

11.1 Scraping Wikipedia (not in sample)

11.2 MDN Web Documentation (not in sample)

11.3 Scraping MDN (not in sample)

11.4 Putting it Together (not in sample)

Snippet 11.1: scraping Wikipedia's front-page links using the Jsoup third-party library in the Scala REPL

The user-facing interface of most networked systems is a website. In fact, often that is the only interface!
This chapter will walk you through using the Jsoup library from Scala to scrape human-readable HTML
pages, unlocking the ability to extract data from websites that do not provide access via an API.

Apart from third-party scraping websites, Jsoup is also a useful tool for testing the HTML user interfaces
that we will encounter in Chapter 14: Simple Web and API Servers. This chapter is also a chance to get
more familiar with using Java libraries from Scala, a necessary skill to take advantage of the broad and deep
Java ecosystem. Lastly, it is an exercise in doing non-trivial interactive development in the Scala REPL, which
is a great place to prototype and try out pieces of code that are not ready to be saved in a script or project.

@ val doc = Jsoup.connect("http://en.wikipedia.org/").get()

@ doc.title()

res2: String = "Wikipedia, the free encyclopedia"

@ val headlines = doc.select("#mp-itn b a")

headlines: select.Elements =

Bek Air Flight 2100

2018 killing

upholds a ruling

... </> 11.1.scala

119

https://localhost/section-header/11%20Scraping%20Websites
https://github.com/handsonscala/handsonscala/blob/v1/snippets/11.1.scala

Chapter 11 Scraping Websites 120

12
Working with HTTP APIs

12.1 The Task: Github Issue Migrator (not in sample)

12.2 Creating Issues and Comments (not in sample)

12.3 Fetching Issues and Comments (not in sample)

12.4 Migrating Issues and Comments (not in sample)

Snippet 12.1: interacting with Github's HTTP API from the Scala REPL

HTTP APIs have become the standard for any organization that wants to let external developers integrate
with their systems. This chapter will walk you through how to access HTTP APIs in Scala, building up to a
simple use case: migrating Github issues from one repository to another using Github's public API.

We will build upon techniques learned in this chapter in Chapter 13: Fork-Join Parallelism with Futures,
where we will be writing a parallel web crawler using the Wikipedia JSON API to walk the graph of articles
and the links between them.

@ requests.post(

 "https://api.github.com/repos/lihaoyi/test/issues",

 data = ujson.Obj("title" -> "hello"),

 headers = Map("Authorization" -> s"token $token")

)

res1: requests.Response = Response(

 "https://api.github.com/repos/lihaoyi/test/issues",

 201,

 "Created",

... </> 12.1.scala

121

https://localhost/section-header/12%20Working%20with%20HTTP%20APIs
https://github.com/handsonscala/handsonscala/blob/v1/snippets/12.1.scala

Chapter 12 Working with HTTP APIs 122

13
Fork-Join Parallelism with Futures

13.1 Parallel Computation using Futures (not in sample)

13.2 N-Ways Parallelism (not in sample)

13.3 Parallel Web Crawling (not in sample)

13.4 Asynchronous Futures (not in sample)

13.5 Asynchronous Web Crawling (not in sample)

Snippet 13.1: a simple parallel web-crawler implemented using Scala Futures

The Scala programming language comes with a Futures API. Futures make parallel and asynchronous
programming much easier to handle than working with traditional techniques of threads, locks, and
callbacks.

This chapter dives into Scala's Futures: how to use them, how they work, and how you can use them to
parallelize data processing workflows. It culminates in using Futures together with the techniques we
learned in Chapter 12: Working with HTTP APIs to write a high-performance concurrent web crawler in a
straightforward and intuitive way.

def fetchAllLinksParallel(startTitle: String, depth: Int): Set[String] = {

 var seen = Set(startTitle)

 var current = Set(startTitle)

 for (i <- Range(0, depth)) {

 val futures = for (title <- current) yield Future{ fetchLinks(title) }

 val nextTitleLists = futures.map(Await.result(_, Inf))

 current = nextTitleLists.flatten.filter(!seen.contains(_))

 seen = seen ++ current

 }

 seen

} </> 13.1.scala

123

https://localhost/section-header/13%20Fork-Join%20Parallelism%20with%20Futures
https://github.com/handsonscala/handsonscala/blob/v1/snippets/13.1.scala

Chapter 13 Fork-Join Parallelism with Futures 124

14
Simple Web and API Servers

14.1 A Minimal Webserver (not in sample)

14.2 Serving HTML (not in sample)

14.3 Forms and Dynamic Data (not in sample)

14.4 Dynamic Page Updates via API Requests (not in sample)

14.5 Real-time Updates with Websockets (not in sample)

Snippet 14.1: a minimal Scala web application, using the Cask web framework

Web and API servers are the backbone of internet systems. While in the last few chapters we learned to
access these systems from a client's perspective, this chapter will teach you how to provide such APIs and
Websites from the server's perspective. We will walk through a complete example of building a simple real-
time chat website serving both HTML web pages and JSON API endpoints. We will re-visit this website in
Chapter 15: Querying SQL Databases, where we will convert its simple in-memory datastore into a proper
SQL database.

object MinimalApplication extends cask.MainRoutes {

 @cask.get("/")

 def hello() = {

 "Hello World!"

 }

 @cask.post("/do-thing")

 def doThing(request: cask.Request) = {

 request.text().reverse

 }

 initialize()

} </> 14.1.scala

125

https://localhost/section-header/14%20Simple%20Web%20and%20API%20Servers
https://github.com/handsonscala/handsonscala/blob/v1/snippets/14.1.scala

Chapter 14 Simple Web and API Servers 126

15
Querying SQL Databases

15.1 Setting up Quill and PostgreSQL (not in sample)

15.2 Mapping Tables to Case Classes (not in sample)

15.3 Querying and Updating Data (not in sample)

15.4 Transactions (not in sample)

15.5 A Database-Backed Chat Website (not in sample)

Snippet 15.1: using the Quill database query library from the Scala REPL

Most modern systems are backed by relational databases. This chapter will walk you through the basics of
using a relational database from Scala, using the Quill query library. We will work through small self-
contained examples of how to store and query data within a Postgres database, and then convert the
interactive chat website we implemented in Chapter 14: Simple Web and API Servers to use a Postgres
database for data storage.

@ ctx.run(query[City].filter(_.population > 5000000).filter(_.countryCode == "CHN"))

res16: List[City] = List(

 City(1890, "Shanghai", "CHN", "Shanghai", 9696300),

 City(1891, "Peking", "CHN", "Peking", 7472000),

 City(1892, "Chongqing", "CHN", "Chongqing", 6351600),

 City(1893, "Tianjin", "CHN", "Tianjin", 5286800)

) </> 15.1.scala

127

https://localhost/section-header/15%20Querying%20SQL%20Databases
https://github.com/handsonscala/handsonscala/blob/v1/snippets/15.1.scala

Chapter 15 Querying SQL Databases 128

Part IV: Program Design
16 Message-based Parallelism with Actors 131

17 Multi-Process Applications 133

18 Building a Real-time File Synchronizer 135

19 Parsing Structured Text 137

20 Implementing a Programming Language 139

The fourth and last part of this book explores different ways of structuring your Scala application to tackle
real-world problems. This chapter builds towards another two capstone projects: building a real-time file
synchronizer and building a programming-language interpreter. These projects will give you a glimpse of the
very different ways the Scala language can be used to implement challenging applications in an elegant and
intuitive manner.

129

https://localhost/section-header/%20Part%20IV:%20Program%20Design

130

16
Message-based Parallelism with

Actors
16.1 Castor Actors (not in sample)

16.2 Actor-based Background Uploads (not in sample)

16.3 Concurrent Logging Pipelines (not in sample)

16.4 Debugging Actors (not in sample)

Snippet 16.1: a simple actor implemented in Scala using the Castor library

Message-based parallelism is a technique that involves splitting your application logic into multiple "actors",
each of which can run concurrently, and only interacts with other actors by exchanging asynchronous
messages. This style of programming was popularized by the Erlang programming language and the Akka
Scala actor library, but the approach is broadly useful and not limited to any particular language or library.

This chapter will introduce the fundamental concepts of message-based parallelism with actors, and how to
use them to achieve parallelism in scenarios where the techniques we covered in Chapter 13: Fork-Join
Parallelism with Futures cannot be applied. We will first discuss the basic actor APIs, see how they can be
used in a standalone use case, and then see how they can be used in more involved multi-actor pipelines.
The techniques in this chapter will come in useful later in Chapter 18: Building a Real-time File
Synchronizer.

class SimpleUploadActor()(implicit cc: castor.Context) extends castor.SimpleActor[String]{

 def run(msg: String) = {

 val res = requests.post("https://httpbin.org/post", data = msg)

 println("response " + res.statusCode)

 }

} </> 16.1.scala

131

https://localhost/section-header/16%20Message-based%20Parallelism%20with%20Actors
https://www.erlang.org/
http://akka.io/
https://github.com/handsonscala/handsonscala/blob/v1/snippets/16.1.scala

Chapter 16 Message-based Parallelism with Actors 132

17
Multi-Process Applications

17.1 Two-Process Build Setup (not in sample)

17.2 Remote Procedure Calls (not in sample)

17.3 The Agent Process (not in sample)

17.4 The Sync Process (not in sample)

17.5 Pipelined Syncing (not in sample)

Snippet 17.1: RPC send and receive methods for sending data over an operating system pipe or network

While all our programs so far have run within a single process, in real world scenarios you will be working as
part of a larger system, and the application itself may need to be split into multiple processes. This chapter
will walk you through how to do so: configuring your build tool to support multiple Scala processes, sharing
code and exchanging serialized messages. These are the building blocks that form the foundation of any
distributed system.

As this chapter's project, we will be building a simple multi-process file synchronizer that can work over a
network. This chapter builds upon the simple single-process file synchronizer in Chapter 7: Files and
Subprocesses, and will form the basis for Chapter 18: Building a Real-time File Synchronizer.

def send[T: Writer](out: DataOutputStream, msg: T): Unit = {

 val bytes = upickle.default.writeBinary(msg)

 out.writeInt(bytes.length)

 out.write(bytes)

 out.flush()

}

def receive[T: Reader](in: DataInputStream) = {

 val buf = new Array[Byte](in.readInt())

 in.readFully(buf)

 upickle.default.readBinary[T](buf)

} </> 17.1.scala

133

https://localhost/section-header/17%20Multi-Process%20Applications
https://github.com/handsonscala/handsonscala/blob/v1/snippets/17.1.scala

Chapter 17 Multi-Process Applications 134

18
Building a Real-time File

Synchronizer
18.1 Watching for Changes (not in sample)

18.2 Real-time Syncing with Actors (not in sample)

18.3 Testing the Syncer (not in sample)

18.4 Pipelined Real-time Syncing (not in sample)

18.5 Testing the Pipelined Syncer (not in sample)

Snippet 18.1: an actor used as part of our real-time file synchronizer

In this chapter, we will write a file synchronizer that can keep the destination folder up to date even as the
source folder changes over time. This chapter serves as a capstone project, tying together concepts from
Chapter 17: Multi-Process Applications and Chapter 16: Message-based Parallelism with Actors.

The techniques in this chapter form the basis for "event driven" architectures, which are common in many
distributed systems. Real-time file synchronization is a difficult problem, and we will see how we can use
the Scala language and libraries to approach it in an elegant and understandable way.

object SyncActor extends castor.SimpleActor[Msg]{

 def run(msg: Msg): Unit = msg match {

 case ChangedPath(value) => Shared.send(agent.stdin.data, Rpc.StatPath(value))

 case AgentResponse(Rpc.StatInfo(p, remoteHash)) =>

 val localHash = Shared.hashPath(src / p)

 if (localHash != remoteHash && localHash.isDefined) {

 Shared.send(agent.stdin.data, Rpc.WriteOver(os.read.bytes(src / p), p))

 }

 }

} </> 18.1.scala

135

https://localhost/section-header/18%20Building%20a%20Real-time%20File%20Synchronizer
https://github.com/handsonscala/handsonscala/blob/v1/snippets/18.1.scala

Chapter 18 Building a Real-time File Synchronizer 136

19
Parsing Structured Text

19.1 Simple Parsers (not in sample)

19.2 Parsing Structured Values (not in sample)

19.3 Implementing a Calculator (not in sample)

19.4 Parser Debugging and Error Reporting (not in sample)

Snippet 19.1: parsing simple text formats using the FastParse library

One common programming task is parsing structured text. This chapter will introduce how to parse text in
Scala using the FastParse library, before diving into an example where we write a simple arithmetic parser in
Scala. This will allow you to work competently with unusual data formats, query languages, or source code
for which you do not already have an existing parser at hand.

We will build upon the parsing techniques learned in this chapter as part of Chapter 20: Implementing a
Programming Language.

@ def parser[_: P] =

 P(("hello" | "goodbye").! ~ " ".rep(1) ~ ("world" | "seattle").! ~ End)

@ fastparse.parse("hello seattle", parser(_))

res41: Parsed[(String, String)] = Success(("hello", "seattle"), 13)

@ fastparse.parse("hello world", parser(_))

res42: Parsed[(String, String)] = Success(("hello", "world"), 15) </> 19.1.scala

137

https://localhost/section-header/19%20Parsing%20Structured%20Text
https://github.com/handsonscala/handsonscala/blob/v1/snippets/19.1.scala

Chapter 19 Parsing Structured Text 138

20
Implementing a Programming

Language
20.1 Interpreting Jsonnet (not in sample)

20.2 Jsonnet Language Features (not in sample)

20.3 Parsing Jsonnet (not in sample)

20.4 Evaluating the Syntax Tree (not in sample)

20.5 Serializing to JSON (not in sample)

Snippet 20.1: evaluating a syntax tree using pattern matching

This chapter builds upon the simple parsers we learned in Chapter 19: Parsing Structured Text, and walks
you through the process of implementing a simple programming language in Scala.

Working with programming language source code is a strength of Scala: parsing, analyzing, compiling, or
interpreting it. This chapter should will you how easy it is to write a simple interpreter to parse and evaluate
program source code in Scala. Even if your goal is not to implement an entirely new programming language,
these techniques are still useful: for writing linters, program analyzers, query engines, and other such tools.

def evaluate(expr: Expr, scope: Map[String, Value]): Value = expr match {

 case Expr.Str(s) => Value.Str(s)

 case Expr.Dict(kvs) => Value.Dict(kvs.map{case (k, v) => (k, evaluate(v, scope))})

 case Expr.Plus(left, right) =>

 val Value.Str(leftStr) = evaluate(left, scope)

 val Value.Str(rightStr) = evaluate(right, scope)

 Value.Str(leftStr + rightStr)

} </> 20.1.scala

139

https://localhost/section-header/20%20Implementing%20a%20Programming%20Language
https://github.com/handsonscala/handsonscala/blob/v1/snippets/20.1.scala

Chapter 20 Implementing a Programming Language 140

Conclusion
This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

Winston Churchill

If you have made it this far through Hands-on Scala, you should by now be comfortable using the Scala
programming language in a wide range of scenarios. You've implemented algorithms, API clients, web
servers, file synchronizers, and programming languages. You've dealt with concurrency and parallelism.
You've worked with the filesystem, databases, data serialization, and many other cross-cutting concerns
that you would find in any real-world software system.

This book only walks you through a narrow slice of the Scala ecosystem: there is a wealth of libraries and
frameworks that people use writing Scala in production, and it is impossible to cover them all in one book.
Nevertheless, the core concepts you learned here apply regardless of which specific toolset you end up
using. Breadth-first search is breadth-first search, and a HTTP request is a HTTP request, regardless of how
the exact method calls are spelled.

Scala is a flexible, broadly useful programming language. By now you have seen how Scala can be used to
tackle even difficult, complex problems in an elegant and straightforward manner. While this book is not the
final word in learning Scala, it should be enough for you to take off on your own, and get started solving real
problems and delivering real value using the Scala language.

141

https://localhost/section-header/%20Conclusion

	Table of Contents
	Foreword
	Author's Note
	Part I: Introduction to Scala
	1 Hands-on Scala
	1.1 Why Scala?
	1.1.1 A Compiled Language that feels Dynamic
	1.1.2 Easy Safety and Correctness
	1.1.3 A Broad and Deep Ecosystem

	1.2 Why This Book?
	1.2.1 Beyond the Scala Language
	1.2.2 Focused on Real Projects
	1.2.3 Code First

	1.3 How This Book Is Organized
	1.3.1 Chapter Dependency Graph

	1.4 Code Snippet and Examples
	1.4.1 Command-Line Snippets
	1.4.2 Scala REPL Snippets
	1.4.3 Source Files
	1.4.4 Diffs

	1.5 Online Materials
	1.5.1 Code Snippets
	1.5.2 Executable Code Examples
	1.5.3 Exercises
	1.5.4 Resources
	1.5.5 Online Discussion

	1.6 Conclusion

	2 Setting Up
	2.1 Windows Setup (Optional)
	2.2 Installing Java
	2.3 Installing Ammonite
	2.3.1 The Scala REPL
	2.3.2 Scala Scripts
	2.3.2.1 Watching Scripts

	2.3.3 Using Scripts from the REPL

	2.4 Installing Mill
	2.4.1 Mill Projects
	2.4.2 Running Unit Tests
	2.4.3 Creating a Stand-Alone Executable

	2.5 IDE Support
	2.5.1 Installing IntelliJ for Scala
	2.5.2 Integrating IntelliJ with Mill
	2.5.3 Visual Studio Code Support

	2.6 Conclusion

	3 Basic Scala
	3.1 Values
	3.1.1 Primitives
	3.1.2 Strings
	3.1.3 Local Values and Variables
	3.1.4 Tuples
	3.1.5 Arrays
	3.1.6 Options

	3.2 Loops, Conditionals, Comprehensions
	3.2.1 For-Loops
	3.2.2 If-Else
	3.2.3 Fizzbuzz
	3.2.4 Comprehensions

	3.3 Methods and Functions
	3.3.1 Methods
	3.3.1.1 Returning Values from Methods

	3.3.2 Function Values
	3.3.2.1 Methods taking Functions
	3.3.2.2 Multiple Parameter Lists

	3.4 Classes and Traits
	3.4.1 Traits

	3.5 Conclusion

	4 Scala Collections
	4.1 Operations
	4.1.1 Builders
	4.1.2 Factory Methods
	4.1.3 Transforms
	4.1.4 Queries
	4.1.5 Aggregations
	4.1.5.1 mkString
	4.1.5.2 foldLeft
	4.1.5.3 groupBy

	4.1.6 Combining Operations
	4.1.7 Converters
	4.1.8 Views

	4.2 Immutable Collections
	4.2.1 Immutable Vectors
	4.2.2 Structural Sharing
	4.2.3 Immutable Sets
	4.2.4 Immutable Maps
	4.2.5 Immutable Lists

	4.3 Mutable Collections
	4.3.1 Mutable ArrayDeques
	4.3.2 Mutable Sets
	4.3.3 Mutable Maps
	4.3.4 In-Place Operations

	4.4 Common Interfaces
	4.5 Conclusion

	5 Notable Scala Features
	5.1 Case Classes and Sealed Traits
	5.1.1 Case Classes
	5.1.2 Sealed Traits
	5.1.3 Use Cases for Normal v.s. Sealed Traits

	5.2 Pattern Matching
	5.2.1 Match
	5.2.1.1 Matching on
	5.2.1.2 Matching on
	5.2.1.3 Matching on tuple
	5.2.1.4 Matching on tuple

	5.2.2 Nested Matches
	5.2.1.5 Matching on Case Classes:
	5.2.1.6 Matching on String Patterns:

	5.2.3 Loops and Vals
	5.2.4 Pattern Matching on Sealed Traits and Case Classes
	5.2.4.1 Stringifying Our Expressions
	5.2.4.2 Evaluating Our Expressions

	5.3 By-Name Parameters
	5.3.1 Avoiding Evaluation
	5.3.2 Wrapping Evaluation
	5.3.3 Repeating Evaluation

	5.4 Implicit Parameters
	5.4.1 Passing ExecutionContext to Futures
	5.4.2 Dependency Injection via Implicits

	5.5 Typeclass Inference
	5.5.1 Problem Statement: Parsing Command Line Arguments
	5.5.2 Separate Parser Objects
	5.5.2.1 Re-Using Our StrParsers

	5.5.3 Solution: Implicit StrParser
	5.5.3.1 Re-Using Our Implicit StrParsers
	5.5.3.2 Context-Bound Syntax
	5.5.3.3 Compile-Time Implicit Safety

	5.5.4 Recursive Typeclass Inference
	5.5.4.1 Parsing Sequences
	5.5.4.2 Parsing Tuples
	5.5.4.3 Parsing Nested Structures

	5.6 Conclusion

	Part II: Local Development
	6 Implementing Algorithms in Scala
	7 Files and Subprocesses
	8 JSON and Binary Data Serialization
	9 Self-Contained Scala Scripts
	10 Static Build Pipelines
	Part III: Web Services
	11 Scraping Websites
	12 Working with HTTP APIs
	13 Fork-Join Parallelism with Futures
	14 Simple Web and API Servers
	15 Querying SQL Databases
	Part IV: Program Design
	16 Message-based Parallelism with Actors
	17 Multi-Process Applications
	18 Building a Real-time File Synchronizer
	19 Parsing Structured Text
	20 Implementing a Programming Language
	Conclusion

